

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

THE VIABILITY OF A DTN SYSTEM FOR CURRENT
MILITARY APPLICATION

by

Todd J. Sehl

March 2013

Thesis Advisor: Geoffrey G. Xie
Co-Advisor: Justin P. Rohrer

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
THE VIABILITY OF A DTN SYSTEM FOR CURRENT MILITARY
APPLICATION

5. FUNDING NUMBERS

6. AUTHOR(S) Todd J. Sehl
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number ____N/A____.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

With DTN technology in development we see the DARPA Disruption-Tolerant
Networking program and the DTN Research Group making significant strides
toward disruption-tolerant network infrastructure. Mobile ad-hoc networks are
a topic of interest in the military today due to the flexibility of the
network to expand and contract continuously and remain consistent in a highly
changing environment. The primary research question in this thesis is the
viability of the SPINDLE Disruption-Tolerant Networking software developed for
field deployment in the United States Marine Corps. My research evaluates the
usability of the BBN SPINDLE BPA for deployment. In this paper, I discuss what
is required to learn, install, and configure the BBN software while evaluating
how stable the software performs. It explores the question of if it is
feasible to add an ICMP notification service for applications whose traffic
has been diverted due to the DTN process. The tests conducted demonstrate two
possible methods to use ICMP messages in a network to convey unique DTN
messages to individual hosts. It demonstrates how a known ICMP message type
can be utilized to carry message flags representing explicit network
disruption notifications in applications designed to recognize them.

14. SUBJECT TERMS DTN, Delay-Tolerant Network, Disruption-Tolerant
Network, SPINDLE, Networks, BBN, Raytheon

15. NUMBER OF
PAGES

109
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

THE VIABILITY OF A DTN SYSTEM FOR CURRENT MILITARY
APPLICATION

Todd J. Sehl
Lieutenant Commander, United States Navy

B.A., Norwich University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2013

Author: Todd J. Sehl

Approved by: Geoffrey G. Xie
Thesis Advisor

Justin P. Rohrer
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

With DTN technology in development we see the DARPA

Disruption-Tolerant Networking program and the DTN Research

Group making significant strides toward disruption-tolerant

network infrastructure. Mobile ad-hoc networks are a topic

of interest in the military today due to the flexibility of

the network to expand and contract continuously and remain

consistent in a highly changing environment. The primary

research question in this thesis is the viability of the

SPINDLE Disruption-Tolerant Networking software developed

for field deployment in the United States Marine Corps. My

research evaluates the usability of the BBN SPINDLE BPA for

deployment. In this paper, I discuss what is required to

learn, install, and configure the BBN software while

evaluating how stable the software performs. It explores

the question of if it is feasible to add an ICMP

notification service for applications whose traffic has

been diverted due to the DTN process. The tests conducted

demonstrate two possible methods to use ICMP messages in a

network to convey unique DTN messages to individual hosts.

It demonstrates how a known ICMP message type can be

utilized to carry message flags representing explicit

network disruption notifications in applications designed

to recognize them.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PROBLEM ..1
B. RESEARCH QUESTIONS4
C. STRUCTURE OF THIS THESIS5

1. Chapter I: Introduction5
2. Chapter II: Background6
3. Chapter III: Test Topologies and Methodology ..6
4. Chapter IV: BBN SPINDLE Software Testing

Results6
5. Chapter V: Adding ICMP Recognition of DTN to

Ekiga ...7
6. Chapter VI: Conclusion7

II. BACKGROUND ..9
A. HISTORY ..9
B. DELAY-TOLERANCE VERSUS DISRUPTION-TOLERANCE10
C. SPINDLE ARCHITECTURE12

1. Bundle Protocol Agent (BPA)13
2. Decision Plane (DP)14
3. Convergence Layer Adapter (CLA)15
4. Data Store (DS)15
5. Application/Middleware (A/M)16

D. BBN SPINDLE BPA ALGORITHMS16
1. Prioritized Epidemic Routing16
2. Anxiety-Prone Link State17
3. Late Binding17
4. Disruption-Tolerant Access to Content18

E. BASIC REQUIREMENTS FOR PROTOCOLS19
1. Packet Data Unit Formats for Data Exchange ...19
2. Address Formats for Data Exchange22
3. Address Mapping and Routing23
4. Sequence Control24

III. TEST TOPOLOGIES AND METHODOLOGY25
A. DISRUPTION-TOLERANT NETWORK TOPOLOGIES25
B. METHODOLOGY AND TESTING29

IV. BBN SPINDLE SOFTWARE TESTING RESULTS31
A. INSTALLATION AND CONFIGURATION31
B. STATIC ROUTING TOPOLOGY34
C. EPIDEMIC ROUTING TOPOLOGY37
D. ADDITIONAL TESTS CONDUCTED40

V. ADDING ICMP RECOGNITION OF DTN TO EKIGA45
A. TEST APPLIATION: EKIGA SOFTPHONE45

 viii

1. OPAL Library48
2. PTLib Library49

B. HANDLING OF ICMP MESSAGES50
1. Design51
2. Experimentation53

VI. CONCLUSION ...63
A. RECOMMENDATIONS FOR FUTURE WORK67

APPENDIX A ..69

APPENDIX B ..71

APPENDIX C ..73

APPENDIX D ..79

LIST OF REFERENCES ..87

INITIAL DISTRIBUTION LIST91

 ix

LIST OF FIGURES

Figure 1. Architectural Components and Interfaces
(Redrawn after [6]).............................13

Figure 2. TCP Header Block................................20
Figure 3. Primary Bundle Header (Redrawn after [8]).......21
Figure 4. Bundle Payload Header (Redrawn after [8]).......21
Figure 5. Linear Topology (Redrawn after [10])............25
Figure 6. Ring Topology (Redrawn after [10])..............26
Figure 7. Edge Topology (Redrawn after [10])..............26
Figure 8. Grid Topology (Redrawn after [10])..............27
Figure 9. Mesh Topology (Redrawn after [10])..............27
Figure 10. Static Routing Topology (Redrawn after [10])....35
Figure 11. Three-node Dynamic Routing Topology (Redrawn

after [10]).....................................38
Figure 12. Diagram of OPAL Library (Redrawn after [13])....48
Figure 13. Test-bed setup of host machines.................54
Figure 14. Displayed results from Sniffer application......54
Figure 15. Command line for crafted ICMP Echo Request......55
Figure 16. Wireshark capture of crafted ICMP Echo Request

at receiving host...............................55
Figure 17. Wireshark capture of ICMP type 192 packet.......56
Figure 18. Command line output of crafted ICMP 192 packet..57
Figure 19. Sniffer output from ICMP packet type 192........57
Figure 20. Command line output of crafted ICMP type 3

packet..58
Figure 21. Wireshark Capture of ICMP type 3 known packet...59
Figure 22. Sniffer output from ICMP type 3 code 0 packet...59
Figure 23. Wireshark capture with ICMP type 3 and code

value 20..60
Figure 24. Command line output from Sniffer for ICMP type

3 code 20 and 21................................60

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Example ICMP/ICMPv6 Disruption Messages.........47

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

A/M Application/Middleware

AA Average Availability

APLS Anxiety-Prone Link State

CLA Convergence Layer Adapter

BGP Border Gateway Protocol

BPA Bundle Protocol Agent

BSP Bundle Security Protocol

CLA Convergence Layer Adapter

CR Connected Routing

DARPA Defense Advanced Research Projects Agency

DP Decision Plane

DR Disrupted Routing

DS Data Store

DTN Disruption-Tolerant Network

DTNRG Delay-Tolerant Networking Research Group

EID Endpoint Identifier

GRB Gamma Ray Burst

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IGRP Interior Gateway Routing Protocol

IP Internet Protocol

IPN Interplanetary Internet

KB Knowledge Base

MANET Mobile Adhoc Network

MTU Maximum Transmission Unit

ND Neighbor Discovery

NPS Naval Postgraduate School

OPAL Open Phone Abstraction Library

OSPF Open Shortest Path First

PDU Protocol Data Unit

 xiv

PREP Prioritized Epidemic

PTLib Portable Tools Library

RIP Routing Information Protocol

SCP Shortest Cost Path

SDNV Self-Delimiting Numeric Values

SIP Session Initiation Protocol

SPINDLE Survivable Policy-Influenced Networking:
Disruption-tolerance through Learning and
Evolution

SSH Secure Shell

SSP Scheme-Specific Part

TCP Transmission Control Program

TMRG Transport Modeling Research Group

URL Universal Resource Locator

VANET Vehicle Adhoc Network

VoIP Voice over IP

XML Extensible Markup Language

 xv

ACKNOWLEDGMENTS

I would like to extend my thanks and appreciation to

several people for their assistance in making this thesis a

valuable learning experience.

I would like to extend a personal thanks to my primary

thesis advisor, Dr. Geoffrey Xie, whose patience and wisdom

led to the successful completion of this paper. I would

also like to thank my thesis co-advisor, Justin Rohrer, for

his insight into the programming and Linux world that I do

not have.

I was also fortunate to be buoyed by the support,

encouragement, and pride of my wife, my kids, my parents,

my sisters and brother, their families, as well as my

loving second family that I inherited when I married my

wife.

I would like to reiterate the deep, heartfelt, and

special thanks I extended to my wife, Ashley, son, Ian, and

daughter, Gabrielle. They have all been an exceptional

support base. Ashley, thank you for your loving support and

prayers, providing your love and understanding on a daily

basis; you really bring out the best in me. Ian, thank you

for helping to remind me that there is more to math than

Automata. Gabrielle, thank you for keeping me young at

heart and providing me with those daily reminders of what

is really important in life. Without all of you, none of

this could have been possible.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM

Delay- and Disruption-Tolerant Networking (DTN)

technology has been in development for years, with the

first documented use of the term delay-tolerant networking

in 2002 by Kevin Fall when adapting interplanetary

networking ideas to terrestrial networks [1]. Most recently

in this area the Defense Advanced Research Project Agency

(DARPA) Disruption-Tolerant Networking program and the

Internet Research Task Force (IRTF) DTN Research Group made

significant strides toward localized disruption-tolerant

network hardware and software that extends the reach of an

ad-hoc network infrastructure. Mobile ad-hoc networks are a

topic of interest in the military today due to the

flexibility of the network to expand and contract

continuously and remain consistent in a highly changing

environment. Deployed combat units require networks that

are highly forgiving of infrastructure changes and frequent

losses of connectivity. Current protocols and network

hardware are designed not to accommodate long delays.

This thesis is an assessment of a current technology

available to run disruption tolerant network applications.

The scope of this thesis is to test the current release of

disruption-tolerant network software, collecting the data

and conducting a comparison to the advertised operation.

This research paper will detail the testing of the

advertised capabilities of a Raytheon/BBN DTN

implementation in comparison to the published user manual.

I will observe the performance of two distinct routing

 2

topologies detailed in the user manual. I will also observe

the performance of some applications offered by the DTN

BPA.

The observations made here are of a current existing

disruption-tolerant network technology developed by BBN

Technologies to test protocols with applications operating

in a test environment. With several platforms sending and

receiving traffic through this network using the

disruption-tolerant network software and protocols, we can

observe traffic reports of data across the routers to

analyze. I will observe and evaluate common data as well as

introduce traffic for operational analysis. Once the lab

testing has progressed to an acceptable point our hope is

to deploy the equipment to a real-world environment and run

similar tests for comparison data. The results from this

testing will serve as feedback for current usage of SPINDLE

software. This feedback will also assist in future design

decisions about developing DTNs for use in real-world

military deployment in mobile ad-hoc networks. It is also

important to evaluate how feasible it is to alter the ICMP

notification service for applications whose traffic has

been diverted to the DTN process.

In the military today, we see the use of mobile

devices proliferating throughout the daily operations of

even the smallest unit. In fact, the small units deployed

to the field seem to be in need of small compact mobile

devices most of all. I have walked though my unit’s office

while en route to accomplish a simple task and seen mobile

phones on many of my co-workers’ desks. Waiting to be used

or in use they are constantly probing for networks to

 3

connect to. Mobile phones are the obvious example of this

but there are several examples of that you may not even

notice. If you simply look around you will see how much of

our life is wireless. From wireless security cameras to

wireless headphones to wireless routers, every aspect of

our life offers a wireless option. Yet a person can wonder

how connected we are really. All these devices are wireless

but they require an access point that can be relied upon

continuously. These devices do not communicate any data

unless they have an established end-to-end link. This is

the current standard of our wireless technology.

Current technology relies on strict standards and firm

addressing of source and destination to establish a route

for data transfer. With shortest path cost metrics defined

through routing protocols such as OSPF, RIP, BGP, and IGRP.

These protocols are excellent for wired networks, which

know where each and every device can be found. This is

accomplished through not physical locations but logical

addresses assigned upon entering the network and renewed

periodically. Once a device enters a wired network it is

not expected to move out rapidly or lose connectivity

frequently. If it does, the device will need to be re-

authenticated each time.

Wireless devices require an access point to connect to

the network. In 802.11, this is an access point to a

physical network of routers and servers. For mobile phones

and other devices that require cellular coverage connect to

controllers via base stations designed to provide the

mobile devices a connection to the Internet. Wireless

protocols assign an IP and expect a certain degree of

 4

compliance to the “remain in one location” theory as well.

Otherwise the access point will lose contact with the

device and de-authenticate it losing the ability to send

and receive traffic. Even with mobile phones there is a

handoff to another controller to maintain access to

whatever resource the user is attempting to traffic data

with. If there is a loss of connectivity then they need to

start over. This creates a lot of overhead when you try to

apply these protocols to a mobile network. Mobile networks

need to be ad-hoc to accommodate the entering and leaving

of devices so rapidly. VANETs are also a prime example of

networks that rely on the fluidity of devices moving and

need protocols to support this nature.

This is where DTNs become extremely sought after. DTNs

are rapidly approaching real-world application needs. In

the military, MANETs and VANETs are being studied

increasingly due to usefulness in the field for all sorts

of units. Raytheon BBN Technologies, funded by the DARPA

DTNRG program, has developed software that establishes and

maintains a network between devices that is disruption-

tolerant utilizing protocols that operate differently than

the common standards of Transmission Control Protocol

(TCP)/Internet Protocol (IP) used today.

B. RESEARCH QUESTIONS

The primary research question for this thesis will be

to evaluate the viability of the current release of the BBN

SPINDLE Disruption Tolerant Networking software developed

for field deployment in the United States Marine Corps

(USMC). This thesis will also explore the questions:

 5

 Is the BBN software easy to install and

configure?

 Are there sufficient scenarios included in

the tutorial?

 Is the code stable?

 Does the new version correct the bugs

reported?

Using these questions this thesis will demonstrate the

DTN software developed and provided to the USMC to enable

access to information when stable end-to-end paths do not

exist and network infrastructure access cannot be assured.

Follow on research could be directed at testing and

development of similar networking software that can enhance

performance of ad-hoc networks in other Department of

Defense branches.

C. STRUCTURE OF THIS THESIS

Including the introduction, this thesis is organized

into six chapters. They outline the concept and testing

done to the current version of SPINDLE software. While this

research paper tests certain capabilities in the SPINDLE

software future research is suggested to further DTN usage

in military operations.

1. Chapter I: Introduction

 This chapter is the introduction to this thesis

detailing the problem seen, the research question and a

brief description of each of the following chapters.

 6

2. Chapter II: Background

This chapter is a condensed review of previous

attempts at delay/disruption tolerant networks and current

programs working on developing new technologies in the DTN

area of research. It explains the difference between delay

and disruption when referring to DTNs. There is an overview

of the BBN SPINDLE Architecture. It will detail the make-up

of the standard DTN bundles and how they compare to current

TCP/IP packet data units. This chapter details the SPINDLE

Disruption-Tolerant Networking System and explains the

intended use. It will describe the technology innovations

to include the routing algorithms, name-management

architecture for DTNs, distributed caching, indexing, and

retrieval approaches for disruption tolerant content-based

(rather than locator-based) access to information, and a

declarative knowledge-based approach that integrates

routing, intentional naming, policy-based resource

management, and content-based access to information.

3. Chapter III: Test Topologies and Methodology

 This chapter provides a short description of the five

different topologies that can be utilized in the BBN

Disruption-Tolerant Network software. It will describe the

tests conducted on the BBN SPINDLE software as well as the

tests to be conducted on ICMP messages.

4. Chapter IV: BBN SPINDLE Software Testing Results

 This chapter will discuss the testing and evaluation

of the BBN SPINDLE BPA software. It will compare the

advertised operation to actual operation in two separate

topologies. It covers the installation, static routing

 7

topology, epidemic routing topology, and review whether

known errors were fixed.

5. Chapter V: Adding ICMP Recognition of DTN to
Ekiga

 This chapter will discuss the Ekiga Softphone and

libraries used. It will explore its use in testing DTN

software as well how I used C++ code to send and receive

DTN special messages via ICMP packets. This software will

be used in future testing and evaluation of the BBN SPINDLE

BPA software. I detail the tests used to determine of ICMP

is a feasible use for DTN unique messages in a network.

6. Chapter VI: Conclusion

 A brief reiteration of the goals of the thesis and

testing done to verify the BBN SPINDLE BPA software, with a

condensed overview of the results. I discuss the

feasibility of the BBN SPINDLE software for deployment and

possible future testing for DTN software.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. BACKGROUND

A. HISTORY

Research into networks that can tolerate a delay in

traffic due to some sort of medium extremities began early

in the lifetime of computer technology. The United States’

government found a need to overcome significant delays and

packet corruption due to the multiple mediums between space

and the surface of the earth. Long delays and timeouts

experienced in transferring traffic to and from space made

using normal network protocols and technology problematic.

Through DARPA, the U.S. government offered funding to NASA,

MITRE, and other research groups to develop a proposal for

the Interplanetary Internet (based on early Interplanetary

Network (IPN) design) hoping to solve some of these issues.

The goal was to improve the networking with short-range

manned missions to the moon and back. The Interplanetary

Internet is made up of a computer network in space,

consisting of a set of network nodes that can communicate

with each other over long distances and tolerate large

delays in traffic. The Interplanetary Internet is a store-

and-forward network of Internets that is often

disconnected, has a wireless backbone fraught with error-

prone links and speed-of-light delays ranging from tens of

minutes to even hours, even when there is a connection [2].

At the same time, as the research continued into advancing

the interplanetary network technology, another form of

network technology closer to home was being developed,

delay tolerant networks. With this expansion into delay

tolerant networks researchers also looked at disruption-

 10

tolerant networks. Military organizations such as DARPA

were interested in disruption-tolerant networks vice delay

tolerant due to the differences in the nature of delay and

disruption tolerant networks. Delay tolerant networks are

designed to combat long latency while disruption-tolerant

are designed to accommodate delay as well as other

communications problems that may lead to disrupted traffic.

As early as the 1970s, advancements of computing

encouraged researchers to develop technology to support

routing between non-fixed locations of computers. The field

did not see much advancement though until the 1990s when

mobile devices became more popular. With wireless protocols

in the interest, mobile ad-hoc networking (MANET) and

vehicular ad-hoc networking (VANET) became areas of

increasing interest.

B. DELAY-TOLERANCE VERSUS DISRUPTION-TOLERANCE

In 2002, researcher Kevin Fall began adapting the IPN

technology with the intention to adapt it to terrestrial

networks. The terms “delay-tolerant networking” and “DTN”

were used for the first time in his paper “A Delay-Tolerant

Network Architecture for Challenged Internets” published in

2003 [1]. With a growing interest in disruption-tolerant

networks and the protocols that were being proposed,

research expanded into disruption-tolerant networks as

well. Even though both delay-tolerant networks and

disruption-tolerant networks have both been referred to as

DTNs there is a difference. In the delay-tolerant networks

proposed by Kevin Fall, the purpose is to overcome the

obstacles encountered by the extreme distances, in which

long latency is expected as in IPNs. Delay-tolerant

 11

networks are just a portion of the research on disruption-

tolerant networks as a whole. Disruption-tolerant networks

however deal with all the issues of intermittent

communications problems, transmission limitations, and

anomalies present either as a by-product of network traffic

conditions, insufficient infrastructure, or intentional

attack.

With mobile technology evolving and potential

communication environments being developed, most mobile

environments do not conform to the Internet’s underlying

assumptions of a guaranteed connection and a reliable path

to the destination now. There are multiple categories of

challenges to connected communication models. These

include, but are not limited to, Intermittent Connectivity,

Long or Variable Delay, Asymmetric Data Rates, and High

Error Rates [3].

Some say, “There is nothing new under the sun” and I

would be forced to believe them even in this new world of

computer networks. One proposed way to achieve a DTN is to

use store-and-forward message switching. A method that

forwards the messages to each node and stores them until it

is capable of forwarding it to the next hop en route to the

destination. The pony express used this very same method

with the rush to the next station and then waits for the

next horse to arrive to send it on.

In today’s active world, we are constantly on the

move. We want networks that can keep up and technology that

can make our travels easier. For example the development of

MANETs and VANETs requires new technology and software that

 12

is tolerant of unexpected loss in communication or

intermittent connectivity. This is the case for

interplanetary Internet as well as common terrestrial

devices today. [3] Because this work consists of research

on the SPINDLE technology developed by BBN, the term DTN

will be used as a reference to disruption-tolerant

networks.

C. SPINDLE ARCHITECTURE

Under the DARPA DTN program, BBN has developed the

Survivable Policy-Influenced Networking: Disruption-

tolerance through Learning and Evolution (SPINDLE) DTN

system. SPINDLE DTN is a modular system designed to enable

a common core to be used with multiple expansion modules as

seen in Figure 1. SPINDLE builds upon the DTNRG reference

implementation (DTN2), which can be downloaded from [4].

Each new module will provide services to the node it is

implemented on. This modular design allows for researchers

to develop new algorithms expanding on the functions

available to the common core of the DTNRG standards and

software [5]. Each component of SPINDLE is attributed to a

separate process allowing an independence from strict

language and tool-chain boundaries. The communication

between components of a node is based on Extensible Markup

Language (XML). Using XML allows standards-based

interoperability for the components. With this

interoperability a module can be started on a given node

and its services made readily available to other DTN

processes already running on the common core.

 13

Figure 1. Architectural Components and Interfaces
(Redrawn after [6])

1. Bundle Protocol Agent (BPA)

The Bundle Protocol Agent offers the bundle protocol

services to the operational node. BPA functions include the

primary services such as: bundle forwarding, fragmentation

and reassembly, custody transfer mechanisms, delivery to

application, deletion, sending administrative bundles such

as status reports, and security functions [5]. The SPINDLE

BPA is made up of four modules: policy module, router

module, naming and late binding module, and content-based

access module.

 14

2. Decision Plane (DP)

The decision plane interacts with the BPA and is

responsible for key decisions involved in the BPA

mechanisms. The DP utilizes the BPA policy module to

provide interpretation and enforcement of user-specified

policies in the basic functionality. The SPINDLE software

uses an “event-condition-action” design. It is intended to

mediate the communications between the BPA and the rest of

the DP. The router module contains the services provided to

the DP to include: unicast and multicast route computation

generation of next hop(s) for bundles, replication and

forwarding, bundle scheduling, and decision to take custody

of a bundle, or to discard a bundle. The router module

determines what network state to distribute, and to whom,

and when. It gathers the network state from incoming

dissemination bundles as well as the local CLAs. The third

module in the DP is the naming and late binding module. The

naming and late binding module maintains and

opportunistically shares naming policies among the DTN

nodes in the network. This module resolves names to

endpoint identifiers of nodes that are used by the router

module. It is also responsible for registration and

dissemination or synchronization of name knowledge bases

for the DTN system. The last module contained by the DP is

the content-based access module. This module is responsible

for: content caching/replication, distributed indexing, and

content-addressable search. It is capable of using several

services from the other DP modules to complete tasks [6].

 15

3. Convergence Layer Adapter (CLA)

Convergence Layer Adapter sends and receives bundles

for the BPA. It converts the data transmission service

utilized in the local node to the present bundle

transmission service determined by the BPA. This adapter

allows the local network to integrate multiple topologies

and still utilize the SPINDLE software for disruption-

tolerant networking. The CLA discovers and retains the

information for links encountered while tracking the

routing groups discovered.

4. Data Store (DS)

The Data Store module is a persistent storage service

for the SPINDLE system. The main job of the DS is storing

bundles, knowledge about bundle metadata, network state

information and application state information. It is

accessible from all other components of the system. There

are three types: key-value, database and knowledge base

key-value. Key-value type is a simple key-value store that

allows other modules to add, retrieve and delete key-value

pairs. The database type consists of databases based on a

relational database management system that allows other

modules to access the information in the DS. It provides

the services to add, delete, and get elements with multiple

fields that can be searched by key. The Knowledge Base (KB)

type of DS uses a KB capable of supporting deduction or

inference through execution of rules on stored facts. A KB

can support internal data storage or back-end storage

system such as MySQL or Berkeley DB [6].

 16

5. Application/Middleware (A/M)

The application and middleware agents simply use the

BP services to transmit and receive bundle payloads. Some

examples of the applications SPINDLE uses are dtnsend and

dtnsource which prepare and send bundles to the

destination, while dtnrecv and dtnsink are used to receive

bundles and assemble the packet data unit for the

applications. SPINDLE also provides some native

administrative applications as well. The three basic

applications provided by SPINDLE through the A/M are

dtnping, dtntraceroute, and dtnreporter.

D. BBN SPINDLE BPA ALGORITHMS

SPINDLE utilizes two routing algorithms to transfer

traffic from one node to the next. The first algorithm is

Prioritized Epidemic (PREP) and the second is Anxiety-Prone

Link State (APLS). PREP imposes a partial ordering on

bundles for transmission and deletion in an individual

intermediately node. APLS builds upon PREP by introducing a

shortest cost path (SCP) mode triggered when the configured

threshold is more than the computed cost to the

destination.

1. Prioritized Epidemic Routing

In Prioritized Epidemic, a drop priority of bundles is

calculated for bundles that have a hop-count value greater

than or equal to a pre-configured threshold. A lower

priority is given to the larger shortest-path cost to the

destination. For example the drop priority pd(B) of a

bundle B is derived from the cost of the lowest-cost path

from the current node to the bundle’s destination D. Thus a

 17

higher cost means a higher likelihood for the bundle to be

dropped in case of buffer overflow. In addition, a

transmission priority is given to bundles that are

headed toward their destination. The transmission priority

pt(B) of a bundle B is equal to its ranking in a radix

sort on (expiryTime(B)-currentTime) and (creationTime(B)-

currentTime). All ties are broken randomly and internode

costs are based on average availability (AA). The AA metric

attempts to calculate and to measure the average fraction

of time in which a link will be available for use which is

then disseminated to all nodes. Path costs are calculated

using the topology learned through this dissemination, with

cost of a link l set to (1 − AA(l)) + c (a small constant

factor that makes routing favor fewer number of hops when

all links have AA of 1) [6].

2. Anxiety-Prone Link State

Anxiety-Prone Link State introduces the shortest cost

path mode that is used anytime the cost to the destination

is less than a pre-configured threshold. In regions prone

to loss of connectivity, or at times when connection is

lost intermittently, PREP-like replicated forwarding is

employed. Any other times or in stable regions, the

behavior of the nodes resembles conventional MANET

forwarding. APLS is expected to be highly adaptive and

competitive with protocols designed for both disrupted and

stable environments [6].

3. Late Binding

Late binding is the process the BPA uses for deferred

name resolution. Due to the nature of a changing network

 18

the source’s resolution of names cannot be counted on for

DTN. SPINDLE uses intermediate nodes in the network (or

even the destination) to perform the resolution of names.

The late binding module addresses the problem of

progressively resolving the destination name to the

canonical name. Some of the key components to the SPINDLE

late binding module are an expressive name scheme based on

a declarative logic language, the addition of a metadata

extension block to the bundle protocol to carry information

for name resolution, the use of knowledge bases to store

name management and resolution information. SPINDLE also

uses publish-subscribe mechanisms to exchange name

management information and performs the name resolution

procedures on each DTN node [6].

4. Disruption-Tolerant Access to Content

SPINDLE proposes that users simply describe what they

want, not where it is stored, and the network moves

information when and where it is needed. We cannot have

this in a standard network due to use of the universal

resource locator (URL). In their current form, URLs include

a DNS name that must be resolved at the source and utilize

technology that expects a reliable connection to the

Internet. In the situation of a deployed ad-hoc network, a

reliable connection is not guaranteed. To achieve the ideal

disruption-tolerant network we need to be able to access

information based on content. DTN research is working on

approaches for opportunistic caching, indexing, and

retrieval of data in such a way that the data can be

accessed even though there is no connection to the

Internet.

 19

E. BASIC REQUIREMENTS FOR PROTOCOLS

Data traffic moves from one node to the next via

commonly understood communications. Data traffic is sent

and received on communicating systems to establish

communications. Therefore, the protocols should specify

rules governing the transmission. In SPINDLE, several

common requirements are addressed differently than in

TCP/IP.

1. Packet Data Unit Formats for Data Exchange

Data is divided into bit-strings with a header area

and a data area. The TCP header as seen in Figure 2

consists of the source port (16 bits), destination port (16

bits), sequence number (32 bits), data offset (4 bits),

reserved field of 3 bits, flags (9 bits), window size (16

bits), checksum (16 bits), urgent pointer (16 bits),

options field (Variable 0–320 bits, divisible by 32) and

padding of zeros to ensure that the TCP header ends and

data begins on a 32 bit boundary [7]. Bit-strings longer

than the maximum transmission unit (MTU) are divided in

pieces of appropriate size.

SPINDLE uses the Bundle Protocol which defines a

series of contiguous data blocks as a bundle. Each bundle

starts with a block that has a header to identify the

received bundle and all the blocks in it. It also

identifies if it is fragmented. The primary block header

consists of the version block (8 bits), Bundle Processing

Control Flags, Block Length, Destination Scheme Offset,

Destination SSP Offset, Source Scheme Offset, Source SSP

Offset, Report-to Scheme Offset, Report-to SSP Offset,

 20

Custodian Scheme Offset, Custodian SSP Offset, Creation

Timestamp time, Creation Timestamp Sequence Number,

Lifetime, Dictionary Length, Dictionary byte array,

Fragment Offset, Total Application Data Unit Length, as

seen in Figure 3. The Bundle Payload Header is much simpler

as seen in Figure 4. All fields in the bundle protocol

header other than the version use SDNV which allows them to

grow or shrink in length depending on need [8].

Figure 2. TCP Header Block

 21

Figure 3. Primary Bundle Header (Redrawn after [8])

Figure 4. Bundle Payload Header (Redrawn after [8])

TCP accepts data from a data stream, segments it into

chunks, and adds a TCP header creating a TCP segment. The

TCP segment is then encapsulated into an Internet Protocol

datagram. However, this assumes there is a persistent

connection to be trusted to remain in effect for the

complete duration of the transmission. This is not the case

for DTNs. In DTNs, there may never be an end-to-end path

 22

available. In DTNs, disconnection is often the norm rather

than the exception. Since this is the case controlled

replication becomes very important.

SPINDLE uses the Bundle Protocol to determine the

sizes of “bundles” to transport between nodes. Bundles are

concatenated sequences of at least two block structures.

The first block is the primary bundle block and contains

the primary bundle block header. There can only be one of

these in a bundle. Multiple additional blocks may follow

the primary with the last being the payload block [8].

2. Address Formats for Data Exchange

Addresses are used to identify both the sender and the

intended receiver(s). A connection between a sender and a

receiver can be identified using an address pair (sender

address, receiver address). Addresses are resolved through

name resolution databases that can be consulted reliably.

Since destination identifiers may not be available at the

source and the nodes with such information are not

available at the source SPINDLE uses EIDs as addresses for

identifying the receiver. Intermediate nodes in the network

will perform the resolution of EIDs, referred to as late

binding.

A bundle uses three EIDs: source, destination, and

reply-to. When the SPINDLE BPA sends a bundle, it must set

the bundle’s source EID to the source from which the bundle

originated, the destination to which the bundle is being

sent, or the address to which bundle status reports

concerning this bundle are sent (reply-to) [9].

 23

3. Address Mapping and Routing

Standard network protocols use address mapping to

translate a logical IP address specified by the application

to an Ethernet hardware address. Internetworking is used

when systems are not directly connected to forward messages

on behalf of the sender.

The SPINDLE BPA uses a so-called “late binding

architecture” which includes an expressive name scheme, an

addition to the bundle protocol for name resolution, use of

knowledge bases to store name management and resolution

information, publish-subscribe mechanisms to exchange name

management information, and name resolution procedures that

are performed at individual DTN nodes [6].

For routing SPINDLE uses the PREP and APLS algorithms,

explained in Chapter II, to determine the best average

fraction of time in which the link will be available for

use to the SPIDLE BPA software. Testing and comparison to

epidemic routing, probabilistic forwarding and purging, and

future contact prediction approaches can be seen in

Krishnan’s original research paper [6]. Bundles are routed

using store and forward over varied network transport

technologies (including both IP and non-IP based

transports). The transport layers carrying the bundles

across their local networks are called bundle convergence

layers. The bundle architecture therefore operates as an

overlay network, providing a new naming architecture based

on Endpoint Identifiers (EIDs) [6].

In many non-IP-based networks, for example X.25, Frame

Relay and ATM, the connection oriented communication is

 24

implemented at network layer or data link layer rather than

the transport layer. In X.25, in telephone network modems

and in wireless communication systems, reliable node-to-

node communication is implemented at lower protocol layers.

4. Sequence Control

In traditional networks, long bit-strings are divided

into pieces, and sent individually. This results in pieces

possibly arriving out of sequence. Sequence information is

provided by the sender so the receiver can determine what

was lost or duplicated, ask for necessary retransmissions

and reassemble the original message.

In the SPINDLE bundle protocol, the primary bundle

header maintains the fragment offset indicating the offset

from the beginning of the original application data unit

from which the payload of the individual bundle was

located. So the SPINDLE BPA retrieves each fragment and

assembles them in order based on fragment offset.

 25

III. TEST TOPOLOGIES AND METHODOLOGY

A. DISRUPTION-TOLERANT NETWORK TOPOLOGIES

The SPINDLE BPA software developed by Raytheon BBN

Technologies provides the BPA support specified in the

Bundle Protocol Agent Functional Requirements (RFC 5050)

and the Bundle Security Protocol (BSP), as specified in the

Internet Engineering Task Force (IETF) Delay-Tolerant

Networking Research Group (DTNRG) Internet Draft revision

08 documents [10].

SPINDLE BPA supports five types of topology: linear,

ring, edge, grid, and mesh. The linear topology (Figure 5)

Connects nodes in a linear formation based on the nodes

list specified in the configuration file. Node 1 connected

directly to Node 2. Node 2 connected directly to Node 3.

Node 3 connected directly to Node 4.

Figure 5. Linear Topology (Redrawn after [10])

The ring topology (Figure 6) is like linear topology,

but the ends are also connected. So Node 5 is also

connected to Node 1 creating a standard ring network

topology.

 26

Figure 6. Ring Topology (Redrawn after [10])

The edge topology (Figure 7) consists of a connection

between the first node on the nodes list to all other

nodes. Thus Node 1 is connected to Node 2, Node 3, and Node

4 but Node 2 is not connected to Node 3 or Node 4. The Node

3 cannot connect directly to Node 4 either.

Figure 7. Edge Topology (Redrawn after [10])

 27

The grid topology consists of a NxN grid formation

where P = “total nodes” and N = ceil(sqrt(P)). The grid is

filled left to right and then top to bottom as seen in

Figure 8.

Figure 8. Grid Topology (Redrawn after [10])

In mesh topology, each node is connected to all the

other nodes, as seen in Figure 9.

Figure 9. Mesh Topology (Redrawn after [10])

 28

The specific type of topology used for a scenario can

be defined in the BPA configuration and changed when

needed. The two BPA configuration files, bbn-bpa.ips

(Appendix A) and bbn-bpa.config (Appendix B), allow the

user to configure these various routing scenarios and node

topologies quickly. Node topologies can be defined via

static routes in the “topology” section of the bbn-bpa.ips

configuration file.

By default SPINDLE topologies are set up using static

multi-hop routes that are installed based on the topology

chosen. Routing can be changed however to non-static

routing paths handled by the routers themselves. This

option allows mixed-mode setups where a portion of the

network uses static routes and another portion uses ad-hoc

routers. The other option for routing is to tell the parser

to not install any sort of multi-hop routes. Another

routing option available is the Neighbor Discovery Options.

In addition to the default behavior, Neighbor Discovery can

be configured to handle some special cases. The first of

these special cases is to tell the parser to install

unicast beacons one-way links (i.e., from node1 to node2).

A second case is to cause a permanent link to be created at

startup between two known nodes. The third case is the

unidirectional setting. This setting tells the parser all

specified links should be created as unidirectional. Routes

can be defined across nodes in this case [10].

 29

B. METHODOLOGY AND TESTING

BBN SPINDLE is new software developed for the U.S.

Marine Corps so it has been provided to Naval Postgraduate

School (NPS) in Monterey, CA for testing before it is

approved for use in a real network environment.

The SPINDLE BPA software delivers BPA support as
specified in the Bundle Protocol Agent Functional
Requirements (RFC 5050) and the Bundle Security
Protocol (BSP), as specified in the Internet
Engineering Task Force (IETF) Delay-Tolerant
Networking Research Group (DTNRG)	 Internet Draft
revision 08 documents. [10]

 The first release given to NPS is the bbn-bpa-s3-

EndemicIRAD-release-20101221–1046. It is the Source Code

Release for DTN IRAD on 21 December 2010. As part of the

research team our goal was to run the application software

on nodes that would simulate an actual operation of a

network. To accomplish this we set up three individual

router nodes running a Linux-variant Vyatta Core version

6.3 as the operating system and a laptop node loaded with

Linux-Mint 12 as the operating system. The SPINDLE BPA

package is a 32-Bit package that was originally tested on

Ubuntu 8.04 and Ubuntu 8.10. Since the original release it

has also been run by other testing teams on Ubuntu 10.10

and 12.04. According to the user manual there are no

specific pre-requisites for the application layer to run

the SPINDLE BPA software and the SPINDLE DTN applications

packages [10].

The routers were DTN nodes connected by multiple

parallel links through separate hubs to simulate fail-over

from one port to another and finally test the disruption-

 30

tolerant networking BPA. Remote access to the testbed

through secure shell (SSH) was used so that the tests could

be observed and repeated by remote evaluators.

The second portion of my work was to analyze the

source code for the Ekiga softphone software to assist in

future testing of the BBN SPINDLE BPA software. The goal

was to write code that sent and received ICMP messages that

are altered to accommodate disruption-tolerant network

traffic messages. This will consist of using an ICMP type

value currently unused in common software. The ICMP type

message will have multiple code values allowing the

receiving code to discern the estimated duration of the

disruption to the network and send a message to the user.

Ultimately the message will be routed through the chat

agent. For now the message will be displayed in the command

line window.

 31

IV. BBN SPINDLE SOFTWARE TESTING RESULTS

After initial testing began and a testbed was setup

for use with the SPINDLE BPA, BBN provided the “Software

User Manual for the USMC Disruption Tolerant Networking”

with a publish date of 14 September 2012. Several of the

tests described here can be found in greater detail in that

user manual. [10]

A. INSTALLATION AND CONFIGURATION

The BBN SPINDLE BPA software is provided as a single

compressed package for the user. You begin by creating a

folder to easily identify the DTN software on the system.

Copy the bbn-s3–20101221.tgz file provided by BBN to the

file on the system where you plan to run the software and

unpack the file using the command:

$ tar xvzf bbn-s3–20101221.tgz

Next step is to extract the SPINDLE BPA and SPINDLE DTN

Applications software in the current directory. Once bbn-

s3–20101221.tgz is unpacked you will have a folder with two

files in the folder: bbn-bpa-s3-EndemicIRAD-release-

20101221–1046.tgz and bbn-dtn3exp-20101216–1606-r5140.tgz.

Open the new folder and unpack the two files that the bbn-

s3–20101221.tgz uncompressed.

The file bbn-bpa-s3-EndemicIRAD-release-20101221–

1046.tgz unpacks the SPINDLE BPA software module including

the configuration files and topology files. From this

folder you will start and stop the BPA module. This folder

contains all the files required to run the BPA module. In

the folder unpacked from the bbn-dtn3exp-20101216–1606-

 32

r5140.tgz file, we install the SPINDLE DTN Applications

software. The SPINDLE DTN Applications software consists of

the following applications: dtnapitest, dtncp, dtnping,

dtnrecv, dtnsend, dtnsource, dtncat, dtncpd, dtnpoll,

dtnreporter, dtnsink, dtntraceroute.

To be able to use the packages unpacked and installed

the bbn-dtn3exp-20101216–1606-r5140/bin directory will need

to be added $PATH environment variable. Once this last step

is completed the native applications provided by the

SPINDLE DTN can be run from the command line. The most

complicated part of the install is adding the bbn-dtn3exp-

20101216–1606-r5140/bin directory to the $PATH environment

variables. This requires the user to be familiar with the

operating system and have a working knowledge of how to

change the user profile.

The BBN SPINDLE BPA package includes two configuration

files: bbn-bpa.config and bbn-bpa.ips. The bbn-bpa.config

file allows for setting Convergence Layer Adapters (CLAs),

Neighbor Discovery (ND) adapters, and Routing components.

The bbn-bpa.config file has several additional

configuration options that can be manipulated by the user

such as:

 Location of bundle storage and bundle state files

 Location of BPA and routing logs

 Location of binaries for BPA, Routing processes
and CLAs.

 Set the log level for each component in the
SPINDLE BPA package.

 33

The bbn-bpa.ips is initialized with local node address

definition and it allows the user to define the topology of

the network to be used. Since it is used to define a

specific topology to be used by the SPINDLE BPA software it

supports multiple configuration parameters defined by the

user to better clarify the topology operations. The default

topology of the SPINDLE BPA is to attempt neighbor

discovery. This file also allows the user to define

interface groups for both multicast one-hop beacons and

unicast beacons.

The BBN SPINDLE BPA package supports the following

routing topologies:

 Static Routing: Static routing definitions are
used with no discovery of network information,
which allows for both connected and disconnected
routing.

 Epidemic Routing: Disconnected Routing is dynamic
and uses epidemic dissemination to distribute
bundles.

 Link State Routing: Connected Routing topology is
dynamic and accomplished by using the TMRG router
to determine routing.

 Endemic Routing: Combines the Connected Routing
and Disconnected Routing ideally for DTN
networks.

Endemic Routing is operational in the 20101221–1046

release. SPINDLE BPA uses a hybrid routing mechanism that

combines Connected Routing (CR) and Disconnected Routing

(DR) to allow transition between each mechanism, any number

of times, to accommodate for the state of disruption in the

network. In theory, with DR a network can support traffic

 34

can be reliably routed through parts of a network even

though they are disrupted. With CR techniques a network can

route bundles efficiently through connected parts of the

network. CR techniques include a combination of static and

dynamic routing. Endemic Routing’s configuration can also

be customized by modifying the configuration parameters in

the bbn-bpa.config file.

B. STATIC ROUTING TOPOLOGY

Static Routing topologies use static routing

definitions only and do not discover any network

information, other than what is configured. Static routing

allows for both connected and disconnected routing scenario

because the routing information is hard-coded via the

configuration.

At this stage of testing our testbed was setup with

only the four nodes so I began by running the first two

scenarios in the user manual provided by BBN to compare the

actual operation with the advertised operation. Scenario 1

utilized a three node linear topology with static routing.

This scenario described the setup, and running of a three

node linear topology using static routing. In Scenario 1,

bundles were exchanged between the end-point nodes

demonstrated in Figure 10.

 35

Figure 10. Static Routing Topology (Redrawn after [10])

To configure the static routing on the nodes the user

utilized the two BPA configuration files and manipulated

the variables inside them. The first variables I set up

were the node identification addresses. For static routing

each node knows of all the others in the routing topology

at startup giving it knowledge of all the routing

available. Since all the nodes are configured to be aware

of all the other EIDs in the network the routing can be

direct and optimized. If a node is identified in the

network but found to be unreachable each node can

recalculate a path by referring to the network topology and

node EIDs.

For this configuration I tested bundle traffic through

the dtnsend, dtnrecv, and dtnsource commands in the SPINDLE

BPA. The first test was to send a simple message from the

originator to another EID in the network. The receiver node

was set to receive bundles directed toward the EID

identified in the dtnrecv command in the form of: dtnrecv

[opts] <endpoint>. The dtnrecv command tells the agent to

enter an endless loop waiting for traffic to arrive.

Bundles were sent from the source node though the dtnsend

 36

command which is in the form of: dtnsend [opts] –s

<source_eid> -d <dest_eid> -t <type> -p <payload>. As the

first test the message is generated by the command line

options at the originating node as the payload. It was

simple and consisted of two words, “Test message.” Ideally

it would travel through one node before reaching the

endpoint. The second test was to send a text file from the

originator to the endpoint. This text file contained two

sentences to demonstrate a file with multiple characters in

it.

Since both the test message and the text files were

small neither needed more than one bundle to convey the

data to the receiver endpoint. The third test was to send

multiple bundles from the originating node using the

dtnsource command which requests custody transfer for the

bundles along the path to the destination and is in the

form of: dtnsource [opts] -s <source_eid> -d <dest_eid> -b

<bundle size> -n <num bundles>. For the test I set the

number of bundles to be 5 and the bundle size to 1024

bytes. At the destination I observed in the log file all

the information about the bundles received. The last test

was to demonstrate how the SPINDLE BPA sends a large bundle

that will fragment and the use of custody to ensure that

all fragmented bundles are delivered. The SPINDLE BPA

fragments bundles to fit into the MTU of the link before

sending, so we can see the fragmentation being applied in

the log files.

At the destination I reviewed the log file to verify

the performance of the SPINDLE BPA and compare it to what

the user manual states. For the static topology all the

 37

tests ran the same as documented in the published user

manual. I saw no difference between my results and what the

user manual stated should be in the log files. This

confirmed that while in a static topology the SPINLDE BPA

software operated as advertised and no problems were

noticed for sending and receiving traffic.

C. EPIDEMIC ROUTING TOPOLOGY

Epidemic Routing is a Disconnected Routing topology.

This topology is dynamic and is accomplished by using the

DR router, which discovers routing and uses epidemic

dissemination to distribute bundles. DR nodes coordinate

with neighbors in distributing bundles to all nodes in the

network, resulting in epidemic bundle distribution.

In Scenario 2, three nodes are set up for a Dynamic

Routing topology as seen in Figure 11. The three nodes are

configured similar to the static topology with the

exception of the individual nodes being aware of the

network EIDs adjacent to them at startup. For the dynamic

setup the configuration file bbn-bpa.ips of a router is

changed from listing each node in the DTN network to only

being aware of itself. By leaving the topology

configuration blank in the SPINDLE BPA ips configuration

file, the router will determine the topology based on the

systems interfaces and routing algorithms. The dynamic

routing is identified in the config configuration file when

you set the routers variable to “dr.”

 38

Figure 11. Three-node Dynamic Routing Topology (Redrawn after
[10])

In the SPINDLE BPA, the epidemic routing algorithms

are used for the dynamic routing. A simple explanation of

epidemic routing is to imagine a situation where a person

has started a rumor by telling a select few of the people

around them. Assume everyone is in a small conference room

and this fixed population is of size n. For simplicity of

explanation, assume homogeneous spreading. The simple

epidemic theory is that anyone can tell anyone else with

equal probability. Assume that k members are already aware

of the rumor and that the rumor spreading occurs in rounds.

What is the probability of hearing the rumor is Prumor(k,n),

assuming that a particular unknowledgeable member is told

in a round if k are already in a round and if k are already

infected? It is Prumor(k,n) = 1 – P(nobody tells any others)

which equals 1 – (1 – 1/n)k. The expected number of newly

 39

told members is equal to (n-k) * Prumor(k,n). In short, it

demonstrates the Binomial Distribution.

With the dynamic routing configuration setup I began

the tests on traffic. I started the SPINDLE BPA on all

nodes enabling the bundling protocol. For these tests the

receiver node used the dtnsink command which tells the

agent the exact number of bundles to expect from the

traffic and is in the form of: dtnsink [-n num|-x|-u|-c]

[opts] [EID] … [EID]. I then logged into the sending node

and for this test I first sent five bundles of 1024 bytes

to the remote destination using the dtnsource command.

Next, I executed a new set of commands to copy a file

with bundles using the dtncp and dtncpd applications. These

applications are provided with the SPINDLE BPA and are the

SPINDLE BPA equivalent to the commonly used command line

protocol secure copy command (scp). The dtncpd and dtncp

applications are used to send a file via DTN to a pre-

defined path on the target node. At the receiver node I

used the dtncpd application command in the form of: dtncpd

[directory]. This command directs the receiver to collect

incoming files and places a copy in a specified output

directory. At the sender node I used the dtncp application

to send the designated file. The dtncp command form is:

dtncp [-expiration sec] [-D] [-C] [-p #] <filename>

<destination_eid> [remote-name].

I reviewed the log files of both the sending nodes and

the receiver nodes to verify the performance of the SPINDLE

 40

BPA and compare it to what the user manual states. In this

lab environment, all the tests ran as expected for the send

and receive.

D. ADDITIONAL TESTS CONDUCTED

Since these scenarios did not test more than the

simple transmissions of one node to another we needed to

test other functionality of the BBN SPINDLE BPA. In this

other testing, we found issues that were reported to BBN as

bugs in the software.

Our initial testing found compilation issues due to

unused variables with current compilers. Using recently

updated Fedora, Ubuntu, and Debian systems in our testbed

we attempted to compile the software and in each case

compilation errors are reported. We were able to get it to

successfully compile by removing the unused variables but

we surmise that some of them are required to check a return

value for error conditions and various other operations.

The new release of BBN SPINDLE BPA compiles cleanly with no

errors or warnings output. It includes the source files for

both 64 bit and 32 bit operating systems. This was tested

on an Ubuntu 12.04 LTS operating system. After the software

was installed with no errors and the environment variables

set for the commands I was able to operate the applications

from the command line.

In release 20101221–1046, when the BBN SPINDLE BPA

software was unzipped and installed on a client machine

operating a newly installed operating system, it would not

operate. Four separate versions of Linux-Mint operating

systems were installed and the BPA was installed on each

 41

one to test the validity of the error. After I tested the

fourth version of Linux-Mint operating systems and found

the error persistent it was concluded that there was a

vital part of the install missing. After we informed BBN of

this error they found it was a library missing from the

newly install operating systems. The SPINDLE BPA would not

start up due to vital dependencies missing. BBN found that

the libpcla.so binary was missing from basic builds of the

software. Since this is not included in most Linux based

operating systems as an initial library the SPINDLE BPA did

not operate after a successful install. The LIBPCLA build

has been augmented and the libpcla.so binary is now

included in every build of release 20130109.

Release 20101221 had an issue with listening and

transmitting on some nodes when dynamic routing was

involved. In the SPINDLE BPA, when DR was enabled, the

transmission from the first application would not be sent

over the wire by DR and only delivered locally. This issue

was caused when a DTN application was sending to the

multicast group while another local DTN application was

listening to the multicast group. Release 20130109 can

provide this functionality with no issues now. When tested

the software accepted transmissions seamlessly. Tests were

conducted on release 20130109 with three nodes running the

BPA software. The first test had two of the three nodes

enrolled in the multicast group while the third was not

enrolled in any multicast groups. All three nodes were

given the command to listen for bundles. A multicast bundle

was broadcast from the node not enrolled in the group to

the members of the multicast group. All the enrolled

 42

members of the group received the bundle correctly. Next

step was to disconnect the node providing the connection

from the sending node to the group and attempt sending

again. The bundle was held back and did not get broadcast

until the connection was re-established. For the next test

the sending node was added into the group. A broadcast from

this node sent to the same multicast group was received by

everyone in the group as well as the sending node. To

ensure this was operating correctly the final node in the

network opposite the first sending node was used as the

sender. All the tests were completed successfully in the

new release.

None of the basic scenarios test the admin reports and

bundle processing. To test functionality of the

applications included in the SPINDLE BPA we tested the

custody reports, dtnping, dtnreporter, and dtntraceroute.

dtnping operates in the new release returning the sequence

number of the bundle sent as well as the time to return.

This is the expected performance for a ping. However, the

other applications do not complete operation. dtntraceroute

bundles are deleted from the traffic by the admin function

of the host node before departing. dtnreporter will

register and start the receiving loop but a successful ping

from another node is not detected or logged as it should

be. Custody of bundles is a problem for release 20101221.

DR would not accept custody of bundles and send bundles

with the custody bit set. Custody transfer and all receipt

types failed to work. These errors resulted from not

setting a singleton bit on admin bundles and we expected it

to be corrected the new release. Release 20130109 lists

 43

this as one of the changes made. The new release of the BBN

BPA sets the singleton bit for all admin bundles but

between dtnping, dtntraceroute, and dtnreporter only

dtnping is operating properly. In the new release, DR now

accepts custody of bundles and sends bundles with the

custody bit set. However, the method used bypasses the

custody signaling process. The change report states that

this will allow custody bundles to switch from CR to DR

seamlessly. To accomplish this custody transfer the startup

script will always set the flag to “enabled” as default.

To further our testing we split our DTN into two

networks with different subnets. The main network our

routers were communicating on used the addresses of

10.0.1.xx while our secondary network used the addresses

10.2.1.xx to communicate. This should not have been an

issue since the user manual gives us a method to let the

two networks discover each other by distinguishing the two

multicast beacon groups on one of the nodes allowing

discovery to be passed along the communication paths to

either side. However, in action it was found that the

bridging node would not discover the second multicast

beacon group. All traffic would transfer internally on

either network but it would not bridge between the two

networks. A static neighbor identification had to be

configured on the bridge node at startup to allow discovery

to occur and thus to allow traffic to pass from a node at

10.0.1.1 to 10.2.1.2. This was without a disruption or

communication error to the network.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

V. ADDING ICMP RECOGNITION OF DTN TO EKIGA

Testing of the BBN DTN software is only the first step

in the testing plan in preparation for deployable software.

The next step is to test applications using the DTN

software. Chat software is the first application type for

this test as it is delay tolerant and regularly used in the

military environment as a speedy and reliable method of

communicating between units.

A. TEST APPLIATION: EKIGA SOFTPHONE

Ekiga is a VoIP, IP Telephony, and Video Conferencing

application that allows users to make audio and video calls

via Session Initiation Protocol (SIP) or H.323. Ekiga is

the first Open Source application to support both H.323 and

SIP, as well as audio and video. Some of the main features

advertised for the Ekiga Softphone version 4.0 are free

Instant Messaging through the Internet, choice of the

service provider, SMS to cell phones if the service

provider supports it, multi-platform support (Windows and

GNU/Linux), and wide interoperability. Ekiga uses the main

deployed standards for telephony protocols (SIP and H.323)

and has been tested with a wide range of softphones,

hardphones, PBX and service providers [11]

Ekiga advertises that it is compatible with any

software, device or router supporting SIP or H.323. Ekiga

is licensed under the GPL license. As a special exception,

permission is given to combine this Ekiga with the programs

OPAL, OpenH323 and PWLIB. The combination of software can

be used and distributed with manipulations without applying

 46

the requirements of the GNU GPL to the OPAL, OpenH323 and

PWLIB programs, as long as the requirements of the GNU GPL

are adhered to for all of the software in the combined

form. As a future testing tool Ekiga softphone was decided

on for the chat traffic testing. The open source code and

GNU license allows us to alter the code as desired and test

on a DTN.

The chat function is the portion of the software that

is significant to my studies. Testing SPINDLE DTN for

disruption-tolerant traffic will be done through Ekiga chat

first and lead to other traffic applications that can take

advantage of the additional DTN transport. My part to

prepare the Ekiga softphone for operation on the SPINDLE

DTN is to develop an ICMP based method for notifying an

application of the use of the DTN transport for its traffic

at an intermediate router.

To utilize the Ekiga softphone for DTN chat testing

there needs to be a way to receive a message back to the

application announcing the disruption. An announcement

should be made visually allowing the application to tell

the user there has been a problem discovered in the

connection. In a standard Internet connection, this could

be a termination of the chat and the user would need to re-

establish the connection to continue. In a DTN, this would

not be needed to continue the chat by virtue of the

expectation of delays and disruptions in the connection

between stations. I began with the intention to intercede

at the socket and intercept ICMP type packets at the socket

and add an additional ICMP type to the recognized list.

This type would carry the DTN disruption notification and

 47

also the code to identify the expected duration of

disruption. The ICMP type value 192 was chosen since it is

not already dedicated to a recognized ICMP report. [12]

Under the ICMP type value of 192 there were seven specific

code values that would be assigned to messages about the

connection. Code values would report the messages seen in

Table 1.

Type Code

Value Meaning Value Description

192
Explicit Network

Disruption
Notification

0 Explicit Loss Notification

1 Path re-established

2 Explicit Delay Notification
< 10 s

3
Explicit Delay Notification

< 1 min

4 Explicit Delay Notification
< 10 min

5 Explicit Delay Notification
< 1 hr

6 Explicit Delay Notification
unknown

7–
255

Reserved

Table 1. Example ICMP/ICMPv6 Disruption Messages

As I followed the path of the software and attempted

to discover where in the application the ICMP messages were

handled I found that Ekiga did not handle the connections

internal to the core source code. The connection

establishment and utilization is handled by two libraries

that are included with the Ekiga Softphone application.

The OPAL VoIP Library is made up of two individual

libraries that originally began as separate projects but

 48

have been released in the most up-to-date version as a

single library under the title of OPAL VoIP Library.

1. OPAL Library

The first library is the Open Phone Abstraction

Library (OPAL). Opal was developed as a derivative of the

OpenH323 library. OPAL supports a wide range of commonly

used protocols utilized to send voice, video and fax data

over IP networks rather than being tied to the H.323

protocol. Initially OPAL only supported the H.323 and SIP

protocols but has grown since the initial conception.

OPAL is a C++ class library for normalizing the

numerous telephony protocols into a single integrated call

model. It is released under the Mozilla Public License. In

the OPAL library, the application layer is presented as a

unified model for making calls over the underlying protocol

or hardware so the calls can be placed and media flow

handled (Figure 12).

Figure 12. Diagram of OPAL Library (Redrawn after [13])

A call in OPAL is defined as the connection between

two or more hosts. Each call is through a connection

created by an endpoint. An endpoint is the state

 49

information of the permanent aspects of a telephone

abstraction for a particular protocol. This is usually the

individual machine that is utilizing the application and

the endpoint only lasts as long as the current call. Ekiga

can control the connection between endpoints according to

its own logic. [14]

OPAL utilizes the PTLib portable library that allows

OPAL to run on a variety of platforms including

Unix/Linux/BSD, MacOSX, Windows, Windows mobile and

embedded systems.

2. PTLib Library

Portable Tools Library (PTLib), which was previously

Portable Windows Library, is the second of the two

libraries bundled in the OPAL VoIP Library. PTLib is a C++

class library that originated as a method to produce

applications that run on both Microsoft Windows and Unix X-

Windows systems. PTLib is used for both commercial and Open

Source products. The motivation in making PTLib available

as Open Source was primarily to support the OpenH323 and

OPAL projects. PTLib is separated into two types of

classes: Base Classes and Console Components. The Base

Classes contain all of the essential support for constructs

such as containers, threads and sockets that are dependent

on platform specific features. The Base Classes are

required for all PTLib programs. [15]

The Console Components employ the library’s

functionality. This functionality is typically platform

independent, so they may not be required for all programs.

On Windows platforms the Base Classes and Console

 50

Components can be divided into distinct library archives.

In contrast to the Windows division of the libraries, Unix

platforms combine all of the code into a single library and

rely on the linker to omit code that is not required. [15]

B. HANDLING OF ICMP MESSAGES

The Internet Control Message Protocol (ICMP) is

designed to handle errors and exchange control messages.

[16] ICMP can be used to determine if a host on the network

is responding. ICMP echo request packets are sent to hosts

and if the host receives that packet, it will return an

ICMP echo reply packet. A common implementation of this is

the ping application, which is included with many operating

systems. ICMP is used to communicate status and error

information available, including notification of network

congestion and of other network transport problems. Ekiga

uses ICMP as a tool in diagnosing host or network problems.

ICMP messages can be widely categorized into two kinds

of messages, query messages and error messages. For ICMP

query messages we can include echo request and echo reply,

time stamp request and reply, information request and

reply, and address mask request and reply. For ICMP error

messages we can include destination unreachable, source

quench, redirect, time exceeded, and parameter problems.

A “type” field in the ICMP header identifies different

types of ICMP messages. For each “type” field, there may

also be a “code” field which acts as a sub-type. For

example, echo reply has a type of 0 and code of 0 while

echo request has a type of 0 and code of 8. Even though

ICMP runs over the IP protocol it has no port numbers.

 51

Unlike TCP or UDP, ICMP messages are sent and received

through the so-called raw socket. [17] When an ICMP message

is delivered, the receiving host might respond internally

but might not communicate back to the source. Since Ekiga

like many applications utilizes the kernel to handle ICMP

messages it is possible that it does not receive the

messages from the raw socket since the kernel may filter

unknown ICMP types. Ekiga relies on the operating system

kernel to pass it the known ICMP types. This presents a

problem when it comes to sending ICMP Messages that are not

recognized by the receiving host. It could discard any

unverified types and not respond or forward the message up

to the application. As an untrusted ICMP Message the host

could also deem it as an ICMP attack. To mitigate ICMP

attacks most professionals recommended that a host block

all ICMP messages of outside of the known error report and

query types.

1. Design

Using applications written in C++ code we can test

whether this is the case and also test a way around this

problem. Since I suspected the kernel of dropping unknown

packets and passing known packets the key was to find a way

to utilize known packets to carry the information about the

connection that is unique to DTN. One technique that may be

possible to convey the information and be allowed to pass

through the kernel is to use the known type of destination

unreachable. ICMP destination unreachable is an ICMP type 3

message consisting of the type field (bits 0–7) set to 3,

the code field (bits 8–15), the checksum, an unused field,

and lastly the IP header with the first 8 bytes of the

 52

original datagram. [16] Destination unreachable messages

are generated by the host or its inbound gateway to inform

the client that the destination is unreachable for some

reason. There are several reasons a destination unreachable

message can be sent. These reasons may include:

 physical connection to the host does not

exist

 the indicated protocol or port is not active

 the data must be fragmented but the ‘don’t

fragment’ flag is on

To get DTN information through to the application this

type of ICMP message seems to have the most potential to

convey the message of expected delay. The code field values

proposed previously for the ICMP type 192 DTN specific

messages from Table 1 can be encoded into the code field of

an ICMP destination unreachable message. With unique

messages identified by the receiving application a DTN

message could be published to the chat window advising the

user of a disruption or delay and expected duration until

connection is re-established.

I wrote two applications utilizing raw sockets in C++

code. I began by writing an application called “crafter” to

send ICMP echo request and receive echo replies. This

version crafts an ICMP header and IP header as well as

calculates a correct checksum as seen in Appendix C. After

that application is complete and tested, I wrote the code

to craft ICMP packets of different types and codes in order

to verify whether the kernel drops ICMP messages of type

192. The same code can be used to change the ICMP type to 3

 53

which is the type recognized as ICMP Destination

Unreachable. I will test to see if the crafted packets pass

through the connection and are recognized by an application

on the receiving host. This receiving application, called

“sniffer,” monitors the receiving connection for ICMP

messages and outputs to the command line if it recognizes

the type and code of each message. The sniffer code is

detailed in Appendix D.

2. Experimentation

The first step was to test for what a standard install

of Ubuntu 12.04 would do when an ICMP echo request was

received. Using Wireshark on two separate hosts running

Ubuntu 12.04 (Figure 13), I started captures on both

operating systems to observe the traffic across the network

Ethernet connection. My first test was to use the native

“ping” application to send ping echo requests between the

hosts to ensure they are properly connected. As expected

the request was acknowledged by the receiving host and an

ICMP Reply was sent back. The ping application display

showed a fluid request and reply for each packet sent from

either host. A sniffer application was on the receiving

host tallying up received ICMP packets captured as seen in

Figure 14.

 54

Figure 13. Test-bed setup of host machines

Figure 14. Displayed results from Sniffer application

The next test was to use C++ code to access the raw

socket and send ICMP echo request packets into the

connection to simulate a ping request and observe if the

same results are captured (Figure 15). The request was

acknowledged and an ICMP reply was sent back by the

receiving host. This shows that the first version of

crafter code runs fluidly with a known type and no extra

data to interpret. The Wireshark capture confirmed that the

echo request was crafted correctly by the application

(Figure 16).

Starting...
Waiting for Packets...

TCP : 0 UDP : 0 ICMP : 16 IGMP : 0 Others : 0 Total : 15

 55

Figure 15. Command line for crafted ICMP Echo Request

Figure 16. Wireshark capture of crafted

ICMP Echo Request at receiving host

The third test was to replace the ICMP type code with

our designated ICMP type code of 192 and observe the

results. To simulate an ICMP packet of a different type I

used a code named pinger found on a programming forum board

[17]. Originally this was a ping imitation program. It

sends an ICMP ECHO packet to the server of your choice and

listens for an ICMP REPLY packet. I used this code as a

base and wrote code to let me change the type and code

Source address: 172.20.109.81
Destination address: 172.20.105.248
Sent 28 byte packet to 172.20.105.248
Received 28 byte reply from 172.20.105.248:
ID: 51047
TTL: 64

 56

fields but I reused the ICMP packet forming as well as the

correct header and checksum algorithms. Using this code the

ICMP header type was replaced with the ICMP type 192 to

simulate the new ICMP packets on the line. I inserted the

ICMP packet with the ICMP type 192 into the traffic and

observed the Wireshark capture on both sending and

receiving hosts. Wireshark captured the packet at both ends

and reported it as “Unknown ICMP (obsolete or malformed?)”

as seen in Figure 17. The crafted packet was sent with no

error as seen in Figure 18. This disproves my hypothesis

that an ICMP message with an unknown type would be dropped

by the kernel. So it could be feasible to use the ICMP type

192 to send DTN specific messages to hosts. Figure 19 shows

that the sniffer application can recognize the ICMP type

192 and print a message based on the code value.

Figure 17. Wireshark capture of ICMP type 192 packet

 57

Figure 18. Command line output of crafted ICMP 192 packet

Figure 19. Sniffer output from ICMP packet type 192

Once these test were completed I evaluated the efforts

it would require to implement this solution at a large

scale. Using the ICMP type 192 can be a viable method for

conveying DTN specific messages to a host but I asked if

there was another method that utilizes current known types

that could provide the additional messaging capabilities

desired. I looked into other message types to see what

would best fit the response required for the DTN unique

messages. I settled on ICMP Destination Unreachable as a

close relation to disrupted traffic. This second method

could be considered here allowing the applications

installed on the individual hosts to make changes to

already known packets. We can change a portion of an ICMP

message already recognized by the kernel. This ICMP message

could carry a message that could be parsed out and

represent an announcement. This would be similar to a

Starting...
Waiting for Packets...

Received ICMP packet of type 192. Success!
Packet has code value of 0
Explicit Loss Notification

Source address: 172.20.109.81
Destination address: 172.20.105.248
Sent 28 byte packet to 172.20.105.248
Packet type: 192
Packet code: 20

 58

covert communication channel between the two hosts. The

method I propose is to use ICMP destination unreachable

type messages and with new “code” values to convey DTN

specific messages.

To test this hypothesis I revised the crafter code to

generate the required ICMP destination unreachable

messages. For the ICMP type I set it equal to 3 designating

it to be ICMP destination unreachable. I was able to send

ICMP destination unreachable message to a designated host

based on the IP address. However, I first sent a packet

that was using a code field value that is known to

Wireshark as “Port unreachable” (Figure 20). This packet

passed through and was recognized with no errors on either

end of the connection (Figure 21). The sniffer running on

the receiving host also recognized it and as seen in Figure

22 it output the desired DTN specific message.

Figure 20. Command line output of crafted

ICMP type 3 packet

Source address: 172.20.109.81
Destination address: 172.20.105.248

Sent 28 byte packet to 172.20.105.248
Packet type: 3
Packet code: 0

 59

Figure 21. Wireshark Capture of ICMP type 3 known packet

Figure 22. Sniffer output from ICMP type 3 code 0 packet

With a successful base test I could advance to a new

code value and observe the packet. I inserted 20 as the

code value since the recognized codes for ICMP Destination

Unreachable packets are 0–15. Once the packet was inserted

into the connection it was recognized clearly as ICMP

destination unreachable and the code was “unknown” as

expected in the Wireshark capture as seen in Figure 23. In

the Sniffer application, it is recognized and the DTN

specific message is output to the command line. This shows

Received ICMP packet of type 3. Success!
Packet has code value of 0

 60

that you can simulate ICMP destination unreachable packets

with new codes to represent DTN unique messages.

Figure 23. Wireshark capture with ICMP type 3

and code value 20

Figure 24. Command line output from Sniffer for
ICMP type 3 code 20 and 21

Received ICMP packet of type 3. Success!
Packet has code value of 20
Explicit Loss Notification

Received ICMP packet of type 3. Success!
Packet has code value of 21
Path re-established

 61

With the both methods of sending ICMP packets showing

effective, it seems feasible to use ICMP packets to inform

applications of the use of DTN transport for their traffic.

Using a new ICMP type to make it specific to DTN is shown

to work with Ubuntu hosts. The method of reusing a known

ICMP message type with previously unused code values in the

header also works according to my tests, and such messages

should be less likely be filtered out by the host operating

systems.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VI. CONCLUSION

The primary research presented in this thesis was the

evaluation of whether the current release of the BBN

SPINDLE Disruption Tolerant Networking software is

deployment ready. Several tests were conducted to examine

the installation and configuration process and associated

documentation to determine the amount of effort required to

accomplish it on a single node and for a network of nodes.

As a secondary research item this thesis explored the task

of altering an ICMP message to get DTN specific messages to

applications. BBN makes it simple to a user with only two

configuration files. With easy configuration and

installation, deployment on multiple nodes is quickly

performed. The major findings from this effort are

summarized as follows.

 This thesis asked the question in the

introduction about the stability of the code.

With the functionality it currently provides it

is my opinion that the BBN SPINDLE BPA is ready

for more testing but not for deployment to the

broader audience. The admin application issues

and the subnet communication issues put the

robust nature of the software into question.

Currently testing is being done with the SPINDLE

BPA software to bridge common chat software with

the SPINDLE BPA DTN software to provide more

robust chat agents to combat units. With

successful chat application integration into DTN

it could lead to other traffic applications being

adjusted for DTN topologies.

 64

 Tests were conducted on the first of the two

scenarios detailed in the user guide. The results

from the tests on scenario one and two from the

user manual show the directions ran well but when

a user deviates from this simple structure it is

difficult to get the software to operate as it

should. For testing in a lab this is viable and

an expert user can accommodate for discrepancies

seen however a novice admin in a combat situation

may not be able to sit down and read through the

user manual and read the configuration files to

decipher the correct method to get the network up

and operational. The valid configurations

detailed in the user manual are not all

functional in actual operation for the current

release. This presents trouble when multiple

network addressing is used for a single DTN. A

commonly used tactic to break a larger network

into several smaller subnets is difficult to do

with the BBN SPINDLE software. Since the user

manual describes the method to enter several

multicast beacon groups into the network

configuration it appears that the plan is to

overcome this barrier and provide functionality

for a DTN across the different subnets. However,

testing shows that multiple network subnets do

not communicate unless neighbors are identified

at startup in the current release of the BBN

SPINLDE software.

 65

 This thesis concludes that BBN SPINLDE BPA

software is a significant step forward in DTN

network software for military units. It is

operational in the basic form and is progressing

toward a complete package that will operate in a

combat environment. It will send and receive

bundles while retaining the data during a

disruption. It gives the network the ability to

be disconnected completely from a gateway for

significantly more time than your standard TCP/IP

allows. It accommodates the same disruption

internally between nodes making the disruption-

tolerant nature valid for use. All the sent

bundles arrived at the destination in sufficient

time to be acceptable while still indulging a

disruption to the connection. With the ability to

adhere to multiple topologies through

configuration files, a single node is very

versatile.

 The reported errors from the first version

provided testing to show the progress of the

software toward an operational status. Testing

showed that the BBN SPINDLE BPA software operates

well when you use the basic applications to send

and receive bundles through the basic topologies

but more complicated admin applications are not

ready for use. In release 20101221, the admin

applications were hindered by not only custody

issues but activation issues. The new release

20130109 makes the claim to have corrected this

 66

error but my tests showed how this fix only

partially works and still leaves applications

lacking the robust versatility to be able to

operate in wider environments outside the lab.

 In this research, tests were conducted on both

static and dynamic routing topologies. The tests

were limited by the small number of nodes but

still show functionality and demonstrate the

remaining errors (e.g., dtntraceroute and

dtnreporter as documented in section IV.D) that

need to be corrected before initiating a large

install into combat units.

 Testing looked at the feasibility of a different

ICMP type than normal to convey unique messages.

The thesis then looked at how current existing

messages could be used to get the unique codes to

the applications. Testing code was written to

show how easy it is to adjust a known and valid

ICMP message and carry the unique code into the

application. Using ICMP destination unreachable

messages allows any node that determines the path

to be disrupted to report back using an ICMP but

with our changes it can have the DTN specific

message.

With robust DTN software deployed to combat units in

remote areas communication can remain fluid while the

network changes dynamically. A DTN is a network of smaller

networks. It is an overlay on top of special-purpose

networks, including the Internet. DTNs support

 67

interoperability of other networks by accommodating long

disruptions and delays between and within those networks,

and by translating between the communication protocols of

those networks. In providing these functions, DTNs

accommodate the mobility and limited power of evolving

wireless communication devices. DTNs can accommodate many

kinds of wireless technologies, including radio frequency

(RF), ultra-wide band (UWB), free-space optical, and

acoustic (sonar or ultrasonic) technologies. BBN SPINLDE

BPA software could be the answer to this in the future.

For future evolutions the topology may be expanded to

8–10 DTN nodes connected through multiple links such as

radio and wired that adapts to changing topology over time.

Furthermore, several topologies may be manipulated during

operation such as mesh to achieve a dynamic environment.

Ultimately, the goal is to have DTN nodes that operate in a

dynamic DTN topology where nodes may join or leave the

network unexpectedly and are resistant to disruption

attacks.

A. RECOMMENDATIONS FOR FUTURE WORK

For future testing of this type it would be helpful to

perform these tests on other platforms to confirm the

results are universal. Future work in this area is really

boundless. DTNs are just starting to gain motivation

towards everyday life applications. SPINDLE software

testing is in the early stages of maturity with this

release. Some future testing could be to use an develop an

application that will monitor the disruptions and report

compounding delays at each node allowing the node to be

able to report disruptions to endpoints it has been aware

 68

of previously. This will allow an algorithm to be written

that can dynamically evaluate the discovered neighbors and

expand or reduce the list as needed. With the dynamic entry

and exit of nodes at such a rapid pace that DTNs are

designed for. Nodes could also attempt discovery of the

individual sensors on neighbors to gather data on node

movement. Knowing where nodes have been and currently are

can give the network a better idea of how to distribute

files on the network. Knowing sensor data will assist in

accessing content based searching rather than address based

access to files. These are just a few research ideas that

can be developed in the near future.

 69

APPENDIX A

Excerpt from bbn-bpa.ips

Specify static routes
Format is: [type:options] nodelist
Type is required, options are optional

Valid Types are:
linear - connects nodes in a linear formation based on the nodes list

example: [linear] node1 node2 node3 node4 node5
node1 <-> node2 <-> node3 <-> node4 <-> node5

ring - like linear, but the ends are also connected

example: [ring] node1 node2 node3 node4 node5
node1 <-> node2 <-> node3 <-> node4 <-> node5 <-> node1

edge - first node on the nodes list connected to all others

example: [edge] node1 node2 node3 node4
node1 <-> node2, node1 <-> node3, node1 <-> node4

grid - NxN grid formation where P=“total # nodes” and N=ceil(sqrt(P))
The grid is filled left to right and then top to bottom

example: [grid] node1 node2 node3 node4 node5 node6
node1 <-> node2 <-> node3
^ ^ ^
| | |
V V V
node4 <-> node5 <-> node6

mesh - all nodes connected to all others

example: [mesh] node1 node2 node3
node1 <-> node2, node1 <-> node3, node2 <-> node3

mesh - all nodes connected to all others

example: [mesh] node1 node2 node3
node1 <-> node2, node1 <-> node3, node2 <-> node3

By default, the topology will be set up using static multihop routes
installed. This can be changed with the options below:

The following options are mutually exclusive of each other:

path Notes a routing path which we expect routers to take care of.
The purpose of this is to create mixed-mode setups where a
portion of the network uses static routes and another portion
uses ad-hoc routers
no_route Tells the parser to not install any sort of multi-hop routes

The following options are mutually exclusive of each other:

nd_unicast Tells the parser to install unicast beacons
one-way links (i.e., node1->node2)
no_nd Causes a permanent link to be created at startup. Note, when
using the TCP CLA, if one side tears down the link, the link
will be taken down on both nodes

The following options may be added with any of the above

unidirectional Tells the parser all specified links should be created

 70

Routes may be specified across multiple lines

NOTE: Current functionality only allows for topologies to include nodes
that belong to the same multicast beacon group as specified by the
udpnd_beacon_groups configuration below.

example:
topology = {
[linear] node1 node2 node3 node4
[linear:nd_unicast] node5 node6 node7 node8 node9
[linear:unidirectional] node10 node11 node12 node13 node14
[edge:path:unidirectional] node15 node16 node17
node18 node19
}

topology = {
}

 71

APPENDIX B

Excerpt from bbn-bpa.config

(required) List of CLAs we’re using

allowed arguments: udp, tcp, pudp, norm
CLAS = udp

(optional) List of Routers we’re using

allowed arguments: dr, flood, tmrg, cba-sflood, gran
ROUTERS = dr

(required) List of Neighbor Discovery Adapters we’re using. When we’re
running with UDP based Neighbor Discovery, the udpnd_beacondaddress in the
“udpnd_beacon_groups” settings in .ips file.

UDPND will send beacons on all ethernet interfaces used by this node as
specified in the .ips file. If we’re running with DR, UDPND will be
automatically enabled.

allowed arguments: udp
ND_ADAPTERS = udp

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

APPENDIX C

1 /*
2 * crafter.c
3 *
4 * Created on: March 19, 2013
5 * Author: Todd Sehl
6 *
7 * NOTES:
8 * Original base code for ICMP mesage creation from
9 * pinger.c code found on a programming forum board:
10 * “http://cboard.cprogramming.com/networking-device-
11 * communication/41635-ping-program.html”
12 *
13 * Changes were made to the application to allow user
14 * the options to change the type and code values on
15 * the command line for the ICMP packets generated.
16 * Crafter.c allows user to input a unique type and
17 * code field values.
18 *
19 */
20
21
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <sys/types.h>
25 #include <sys/socket.h>
26 #include <netinet/in.h>
27 #include <arpa/inet.h>
28 #include <netdb.h>
29 #include <linux/ip.h>
30 #include <linux/icmp.h>
31 #include <string.h>
32 #include <unistd.h>
33
34
35 unsigned short in_cksum(unsigned short *, int);
36 void usage();
37 char* getip();
38 char* toip(char*);
39
40 int main(int argc, char* argv[])
41 {
42 struct iphdr* ip;
43 struct icmphdr* icmp;
44 struct sockaddr_in connection;
45 char* packet;

 74

46 char* buffer;
47 int sockfd;
48 int optval;
49 char **av = argv;
50 char src_addr[20];
51 char dst_addr[20];
52 int ICMP_TYPE_VAL = 192;
53 int ICMP_CODE_VAL = 0;

54 int src_set = 0;
55
56 if (getuid() != 0)
57 {
58 fprintf(stderr, “%s: root privileges needed\n,” *(argv + 0));
59 exit(EXIT_FAILURE);
60 }
61
62 /* there are too many options on the command line */
63 if(argc == 1)
64 {
65 usage();
66 exit(EXIT_FAILURE);
67 }
68
69 /* there are too many options on the command line */
70 if(argc > 8)
71 {
72 printf(“You have provided too many arguments for this program.”);
73 usage();
74 exit(EXIT_FAILURE);
75 }
76
77 if (*av == ‘-h’)
78 {
79 usage();
80 exit(EXIT_FAILURE);
81 }
82
83
84 argc--, av++;
85 //Parse out arguments from command line
86 if (argc == 1)
87 {
88 /*
89 * only one argument provided
90 * assume it is the destination server
91 * source address is local host
92 */
93 strncpy(dst_addr, *(av), 15);
94 strncpy(src_addr, getip(), 15);

 75

95 }
96 else if(argc > 1)
97 {
98 strncpy(dst_addr, *(av), 15);
99 argc--, av++;
100 while (argc > 0 && *av[0] == ‘-’)
101 {
102 while (*++av[0])
103 {
104 switch (*av[0])
105 {
106 case ‘s’:
107 src_set = 1;
108 av++;
109 strncpy(src_addr, *(av), 15);
110 printf(“source\n”);
111 break;
112 case ‘t’:
113 av++;
114 ICMP_TYPE_VAL = atoi(av[0]);
115 printf(“type\n”);
116 break;
117 case ‘c’:
118 av++;
119 ICMP_CODE_VAL = atoi(av[0]);
120 printf(“code\n”);
121 break;
122 case ‘h’:
123 usage();
124 exit(EXIT_FAILURE);
125 }
126 argc--;
127 if (av[1] != NULL)
128 {
129 av++;
130 }
131 }
132 }
133 }
134
135 if (src_set == 0)
136 {
137 strncpy(src_addr, getip(), 15);
138 }
139
140 strncpy(dst_addr, toip(dst_addr), 20);
141 strncpy(src_addr, toip(src_addr), 20);
142 printf(“Source address: %s\n,” src_addr);
143 printf(“Destination address: %s\n,” dst_addr);

 76

144
145 /*
146 * allocate all necessary memory
147 */
148 packet = malloc(sizeof(struct iphdr) + sizeof(struct icmphdr));
149 buffer = malloc(sizeof(struct iphdr) + sizeof(struct icmphdr));
150 /**/
151
152 ip = (struct iphdr*) packet;
153 icmp = (struct icmphdr*) (packet + sizeof(struct iphdr));
154
155 /*
156 * here the ip packet is set up
157 */
158 ip->ihl = 5;
159 ip->version = 4;
160 ip->tos = 0;
161 ip->tot_len = sizeof(struct iphdr) + sizeof(struct icmphdr);
162 ip->id = htons(0);
163 ip->frag_off = 0;
164 ip->ttl = 64;
165 ip->protocol = IPPROTO_ICMP;
166 ip->saddr = inet_addr(src_addr);
167 ip->daddr = inet_addr(dst_addr);
168 ip->check = in_cksum((unsigned short *)ip, sizeof(struct

iphdr));
169
170 if ((sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)) == -1)
171 {
172 perror(“socket”);
173 exit(EXIT_FAILURE);
174 }
175
176 /*
177 * IP_HDRINCL must be set on the socket so that
178 * the kernel does not attempt to automatically add
179 * a default ip header to the packet
180 */
181
182 setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, &optval, sizeof(int));
183
184 /*
185 * here the icmp packet is created
186 * also the ip checksum is generated
187 */
188 icmp-> type = ICMP_TYPE_VAL;
189 icmp-> code = ICMP_CODE_VAL;
190 icmp-> checksum = in_cksum((unsigned short *)icmp,

sizeof(struct icmphdr));

191
192 connection.sin_family = AF_INET;
193 connection.sin_addr.s_addr = inet_addr(dst_addr);

 77

194
195 /*
196 * now the packet is sent
197 */
198 sendto(sockfd, packet, ip->tot_len, 0, (struct sockaddr

*)&connection, sizeof(struct sockaddr));
199 printf(“\nSent %d byte packet to %s\nPacket type: %d\nPacket code:

%d\n\n,” ip->tot_len, dst_addr,icmp->type, icmp->code);
200
201 free(packet);
202 free(buffer);
203 close(sockfd);
204 return 0;
205 }
206
207 void usage()
208 {

209 fprintf(stderr, “\nUsage: crafter [destination] <-s [source]> <-t
[type]> <-c [code]>\n”);

210 fprintf(stderr, “OPTIONS:\t-s\tsource IP address\n\t\t-
t\tICMP message type value\n\t\t-c\tICMP message code
value\n\n”);

211 fprintf(stderr, “Destination must be provided.\n”);
212 fprintf(stderr, “Source, type, and code are optional.\n”);
213 fprintf(stderr, “Defaults:\tsource = localhost \n\t\ttype = 192

\n\t\tcode = 0\n\n”);
214 fprintf(stderr, “Example: crafter 192.120.20.210 -t 3 -c

22\n\n\n”);
215 }
216
217 char* getip()
218 {
219 char buffer[256];
220 struct hostent* h;
221
222 gethostname(buffer, 256);
223 h = gethostbyname(buffer);
224
225 return inet_ntoa(*(struct in_addr *)h->h_addr);
226
227 }
228
229 /*
230 * return the ip address if host provided by DNS name
231 */
232 char* toip(char* address)
233 {
234 struct hostent* h;
235 h = gethostbyname(address);

 78

236 return inet_ntoa(*(struct in_addr *)h->h_addr);
237 }
238
239 /*
240 * in_cksum --
241 * Checksum routine for Internet Protocol
242 * family headers (C Version)
243 */
244 unsigned short in_cksum(unsigned short *addr, int len)
245 {
246 register int sum = 0;
247 u_short answer = 0;
248 register u_short *w = addr;
249 register int nleft = len;
250 /*
251 * Our algorithm is simple, using a 32 bit accumulator (sum), we

add
252 * sequential 16 bit words to it, and at the end, fold back all the
253 * carry bits from the top 16 bits into the lower 16 bits.
254 */
255 while (nleft > 1)
256 {
257 sum += *w++;
258 nleft -= 2;
259 }

260 /* mop up an odd byte, if necessary */
261 if (nleft == 1)
262 {
263 *(u_char *) (&answer) = *(u_char *) w;
264 sum += answer;
265 }
266 /* add back carry outs from top 16 bits to low 16 bits */
267 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
268 sum += (sum >> 16); /* add carry */
269 answer = ~sum; /* truncate to 16 bits */
270 return (answer);
271 }

 79

APPENDIX D

1 /*
2 * sniffer.c
3 *
4 * Date: March 19, 2013
5 * Update Author: Todd Sehl
6 * Original Author: Unkown
7 * Location: http://www.binarytides.com/packet-sniffer-
8 * code-in-c-using-linux-sockets-bsd/
9 *
10 * NOTE:
11 * This code was found on a website for learning to
12 * write a packet sniffer. It performs the task of showing
13 * the ICMP arrival. I did not write it. I only added code to
14 * print to the screen when the teh DTN unique ICMP packets
15 * are captured.
16 *
17 */
18
19
20 #include<stdio.h> //For standard things
21 #include<stdlib.h> //malloc
22 #include<string.h> //memset
23 #include<netinet/ip_icmp.h> //Provides declarations for icmp header
24 #include<netinet/udp.h> //Provides declarations for udp header
25 #include<netinet/tcp.h> //Provides declarations for tcp header
26 #include<netinet/ip.h> //Provides declarations for ip header
27 #include<sys/socket.h>
28 #include<arpa/inet.h>
29
30 void ProcessPacket(unsigned char* , int);
31 void print_ip_header(unsigned char* , int);
32 void print_tcp_packet(unsigned char* , int);
33 void print_udp_packet(unsigned char * , int);
34 void print_icmp_packet(unsigned char* , int);
35 void PrintData (unsigned char* , int);
36
37 int sock_raw;
38 FILE *logfile;
39 int tcp=0,udp=0,icmp=0,others=0,igmp=0,total=0,i,j;
40 struct sockaddr_in source,dest;
41
42 int main()
43 {
44 int saddr_size , data_size;
45 struct sockaddr saddr;
46 struct in_addr in;
47
48 unsigned char *buffer = (unsigned char *)malloc(65536); //Its Big!
49
50 logfile=fopen(“log.txt,”“w”);

 80

51 if(logfile==NULL) printf(“Unable to create file.”);
52 printf(“Starting...\n”);
53 //Create a raw socket that shall sniff
54 sock_raw = socket(AF_INET , SOCK_RAW , IPPROTO_ICMP);
55 if(sock_raw < 0)
56 {
57 printf(“Socket Error\n”);
58 return 1;
59 }
60 while(1)
61 {
62 saddr_size = sizeof saddr;
63 //Receive a packet
64 data_size = recvfrom(sock_raw , buffer , 65536 , 0 , &saddr ,

&saddr_size);
65 if(data_size <0)
66 {
67 printf(“Recvfrom error , failed to get packets\n”);
68 return 1;
69 }
70 //Now process the packet
71 ProcessPacket(buffer , data_size);
72 }
73 close(sock_raw);
74 printf(“Finished”);
75 return 0;
76 }
77
78 void ProcessPacket(unsigned char* buffer, int size)
79 {
80 //Get the IP Header part of this packet
81 struct iphdr *iph = (struct iphdr*)buffer;
82 ++total;
83 switch (iph->protocol) //Check the Protocol and do accordingly...
84 {
85 case 1: //ICMP Protocol
86 print_icmp_packet(buffer, size);
87 ++icmp;
88 //PrintIcmpPacket(Buffer,Size);
89 break;
90
91 case 2: //IGMP Protocol
92 ++igmp;
93 break;
94
95 case 6: //TCP Protocol
96 ++tcp;
97 print_tcp_packet(buffer , size);
98 break;
99
100 case 17: //UDP Protocol
101 ++udp;
102 print_udp_packet(buffer , size);
103 break;

 81

104
105 default: //Some Other Protocol like ARP etc.
106 ++others;
107 break;
108 }
109 printf(“TCP : %d UDP : %d ICMP : %d IGMP : %d Others : %d

 Total : %d\r,”tcp,udp,icmp,igmp,others,total);
110 }
111
112 void print_ip_header(unsigned char* Buffer, int Size)
113 {
114 unsigned short iphdrlen;
115
116 struct iphdr *iph = (struct iphdr *)Buffer;
117 iphdrlen =iph->ihl*4;
118
119 memset(&source, 0, sizeof(source));
120 source.sin_addr.s_addr = iph->saddr;
121
122 memset(&dest, 0, sizeof(dest));
123 dest.sin_addr.s_addr = iph->daddr;
124
125 fprintf(logfile,”\n”);
126 fprintf(logfile,”IP Header\n”);
127 fprintf(logfile,” |-IP Version : %d\n,”(unsigned int)iph-

>version);
128 fprintf(logfile,” |-IP Header Length : %d DWORDS or %d

Bytes\n,”(unsigned int)iph->ihl,((unsigned int)(iph->ihl))*4);
129 fprintf(logfile,” |-Type Of Service : %d\n,”(unsigned int)iph-

>tos);
130 fprintf(logfile,” |-IP Total Length : %d Bytes(Size of

Packet)\n,”ntohs(iph->tot_len));
131 fprintf(logfile,” |-Identification : %d\n,”ntohs(iph->id));
132 //fprintf(logfile,” |-Reserved ZERO Field :

%d\n,”(unsigned int)iphdr->ip_reserved_zero);
133 //fprintf(logfile,” |-Dont Fragment Field :

%d\n,”(unsigned int)iphdr->ip_dont_fragment);
134 //fprintf(logfile,” |-More Fragment Field :

%d\n,”(unsigned int)iphdr->ip_more_fragment);
135 fprintf(logfile,” |-TTL : %d\n,”(unsigned int)iph-

>ttl);
136 fprintf(logfile,” |-Protocol : %d\n,”(unsigned int)iph-

>protocol);
137 fprintf(logfile,” |-Checksum : %d\n,”ntohs(iph->check));
138 fprintf(logfile,” |-Source IP :

%s\n,”inet_ntoa(source.sin_addr));
139 fprintf(logfile,” |-Destination IP :

%s\n,”inet_ntoa(dest.sin_addr));
140 }
141
142 void print_tcp_packet(unsigned char* Buffer, int Size)
143 {
144 unsigned short iphdrlen;
145

 82

146 struct iphdr *iph = (struct iphdr *)Buffer;
147 iphdrlen = iph->ihl*4;
148
149 struct tcphdr *tcph=(struct tcphdr*)(Buffer + iphdrlen);
150
151 fprintf(logfile,”\n\n***********************TCP

Packet*************************\n”);
152
153 print_ip_header(Buffer,Size);
154
155 fprintf(logfile,”\n”);
156 fprintf(logfile,”TCP Header\n”);
157 fprintf(logfile,” |-Source Port : %u\n,”ntohs(tcph->source));
158 fprintf(logfile,” |-Destination Port : %u\n,”ntohs(tcph->dest));

159 fprintf(logfile,” |-Sequence Number : %u\n,”ntohl(tcph->seq));
160 fprintf(logfile,” |-Acknowledge Number : %u\n,”ntohl(tcph-

>ack_seq));
161 fprintf(logfile,” |-Header Length : %d DWORDS or %d BYTES\n”

,(unsigned int)tcph->doff,(unsigned int)tcph->doff*4);
162 //fprintf(logfile,” |-CWR Flag : %d\n,”(unsigned int)tcph->cwr);
163 //fprintf(logfile,” |-ECN Flag : %d\n,”(unsigned int)tcph->ece);
164 fprintf(logfile,” |-Urgent Flag : %d\n,”(unsigned

int)tcph->urg);
165 fprintf(logfile,” |-Acknowledgement Flag : %d\n,”(unsigned

int)tcph->ack);
166 fprintf(logfile,” |-Push Flag : %d\n,”(unsigned

int)tcph->psh);
167 fprintf(logfile,” |-Reset Flag : %d\n,”(unsigned

int)tcph->rst);
168 fprintf(logfile,” |-Synchronise Flag : %d\n,”(unsigned

int)tcph->syn);
169 fprintf(logfile,” |-Finish Flag : %d\n,”(unsigned

int)tcph->fin);
170 fprintf(logfile,” |-Window : %d\n,”ntohs(tcph->window));
171 fprintf(logfile,” |-Checksum : %d\n,”ntohs(tcph->check));
172 fprintf(logfile,” |-Urgent Pointer : %d\n,”tcph->urg_ptr);
173 fprintf(logfile,”\n”);
174 fprintf(logfile,” DATA Dump “);
175 fprintf(logfile,”\n”);
176
177 fprintf(logfile,”IP Header\n”);
178 PrintData(Buffer,iphdrlen);
179
180 fprintf(logfile,”TCP Header\n”);
181 PrintData(Buffer+iphdrlen,tcph->doff*4);
182
183 fprintf(logfile,”Data Payload\n”);
184 PrintData(Buffer + iphdrlen + tcph->doff*4 , (Size - tcph->doff*4-

iph->ihl*4));
185
186

 fprintf(logfile,”\n##
#############”);

187 }
188

 83

189 void print_udp_packet(unsigned char *Buffer , int Size)
190 {
191
192 unsigned short iphdrlen;
193
194 struct iphdr *iph = (struct iphdr *)Buffer;
195 iphdrlen = iph->ihl*4;
196
197 struct udphdr *udph = (struct udphdr*)(Buffer + iphdrlen);
198
199 fprintf(logfile,”\n\n***********************UDP

Packet*************************\n”);
200
201 print_ip_header(Buffer,Size);
202
203 fprintf(logfile,”\nUDP Header\n”);
204 fprintf(logfile,” |-Source Port : %d\n” , ntohs(udph-

>source));
205 fprintf(logfile,” |-Destination Port : %d\n” , ntohs(udph->dest));
206 fprintf(logfile,” |-UDP Length : %d\n” , ntohs(udph->len));
207 fprintf(logfile,” |-UDP Checksum : %d\n” , ntohs(udph->check));
208
209 fprintf(logfile,”\n”);
210 fprintf(logfile,”IP Header\n”);
211 PrintData(Buffer , iphdrlen);
212
213 fprintf(logfile,”UDP Header\n”);
214 PrintData(Buffer+iphdrlen , sizeof udph);
215
216 fprintf(logfile,”Data Payload\n”);
217 PrintData(Buffer + iphdrlen + sizeof udph ,(Size - sizeof udph -

iph->ihl * 4));
218
219

 fprintf(logfile,”\n##
#############”);

220 }
221
222 void print_icmp_packet(unsigned char* Buffer , int Size)
223 {
224 unsigned short iphdrlen;
225 unsigned short icmp_code;
226
227 struct iphdr *iph = (struct iphdr *)Buffer;
228 iphdrlen = iph->ihl*4;
229
230 struct icmphdr *icmph = (struct icmphdr *)(Buffer + iphdrlen);
231
232

 fprintf(logfile,”\n\n**************
*********ICMP
Packet*************************\n”)
;

233
234 print_ip_header(Buffer , Size);

 84

235
236 fprintf(logfile,”\n”);
237
238 fprintf(logfile,”ICMP Header\n”);
239 fprintf(logfile,” |-Type : %d,”(unsigned int)(icmph->type));
240
241 if((unsigned int)(icmph->type) == 11)
242 fprintf(logfile,” (TTL Expired)\n”);
243 else if((unsigned int)(icmph->type) == ICMP_ECHOREPLY)
244 fprintf(logfile,” (ICMP Echo Reply)\n”);
245 fprintf(logfile,” |-Code : %d\n,”(unsigned int)(icmph->code));
246 fprintf(logfile,” |-Checksum : %d\n,”ntohs(icmph->checksum));
247
248 icmp_code = icmph->code;
249 //Added code to print to screen if the type is 192
250 if((unsigned int)(icmph->type) == 192)
251 {
252 printf(“Recieved ICMP packet of type 192. Success!\nPacket has

code value of %d\n,” icmp_code);
253 switch(icmp_code)
254 {
255 case 0:
256 printf(“Explicit Loss Notification \n”);
257 break;
258
259 case 1:
260 printf(“Path re-established \n”);
261 break;
262
263 case 2:
264 printf(“Explicit Delay Notification < 10 s \n”);
265 break;
266
267 case 3:
268 printf(“Explicit Delay Notification < 1 min \n”);
269 break;
270
271 case 4:
272 printf(“Explicit Delay Notification < 10 min \n”);
273 break;
274
275 case 5:
276 printf(“Explicit Delay Notification < 1 hr \n”);
277 break;
278
279 case 6:
280 printf(“Explicit Delay Notification unknown \n”);
281 break;
282 }
283 }
284
285
286
287

 85

288 //Added code to print messages to screen from Destination
Unreachable

289 if(((unsigned int)(icmph->type) == 3) && ((unsigned int)(icmph-
>code) >= 20))

290 {
291 printf(“Received ICMP packet of type 3. Success!\nPacket has code

value of %d\n,” icmp_code);
292
293 switch(icmp_code)
294 {
295 case 20:
296 printf(“Explicit Loss Notification \n”);
297 break;
298
299 case 21:
300 printf(“Path re-established \n”);
301 break;
302
303 case 22:
304 printf(“Explicit Delay Notification < 10 s \n”);
305 break;
306
307 case 23:
308 printf(“Explicit Delay Notification < 1 min \n”);
309 break;
310
311 case 24:
312 printf(“Explicit Delay Notification < 10 min \n”);
313 break;
314
315 case 25:
316 printf(“Explicit Delay Notification < 1 hr \n”);
317 break;
318
319 case 26:
320 printf(“Explicit Delay Notification unknown \n”);
321 break;
322 }
323 }
324 //fprintf(logfile,” |-ID : %d\n,”ntohs(icmph->id));
325 //fprintf(logfile,” |-Sequence : %d\n,”ntohs(icmph->sequence));
326 fprintf(logfile,”\n”);
327
328 fprintf(logfile,”IP Header\n”);
329 PrintData(Buffer,iphdrlen);
330
331 fprintf(logfile,”UDP Header\n”);
332 PrintData(Buffer + iphdrlen , sizeof icmph);
333
334 fprintf(logfile,”Data Payload\n”);
335 PrintData(Buffer + iphdrlen + sizeof icmph , (Size - sizeof icmph

- iph->ihl * 4));
336

 86

337
 fprintf(logfile,”\n##
#############”);

338 }
339
340 void PrintData (unsigned char* data , int Size)
341 {
342
343 for(i=0 ; i < Size ; i++)
344 {
345 if(i!=0 && i%16==0) //if one line of hex printing is

complete...
346 {
347 fprintf(logfile,” “);
348 for(j=i-16 ; j<i ; j++)
349 {
350 if(data[j]>=32 && data[j]<=128)
351 fprintf(logfile,”%c,”(unsigned char)data[j]); //if its a

number or alphabet
352
353 else fprintf(logfile,.”“); //otherwise print a dot
354 }
355 fprintf(logfile,”\n”);
356 }
357
358 if(i%16==0) fprintf(logfile,” “);
359 fprintf(logfile,” %02X,”(unsigned int)data[i]);
360
361 if(i==Size-1) //print the last spaces
362 {
363 for(j=0;j<15-i%16;j++) fprintf(logfile,” “); //extra spaces
364
365 fprintf(logfile,” “);
366
367 for(j=i-i%16 ; j<=i ; j++)
368 {
369 if(data[j]>=32 && data[j]<=128)

fprintf(logfile,”%c,”(unsigned char)data[j]);
370 else fprintf(logfile,.”“);
371 }
372 fprintf(logfile,”\n”);
373 }
374 }
375 }

 87

LIST OF REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for
challenged Internets,” SIGCOMM’03, pp. 27–34, 2003.

[2] S. Burleigh, V. Cerf, R. Durst, K. Fall, A. Hooke and
K. Scott, “The interplanetary Internet: A
communications infrastructure for Mars exploration,”
Acta Astronautica, vol. 53, no. 4–10, pp. 365–373,
2003.

[3] F. Warthman, “Delay- and Disruption-Tolerant Networks
A Primer,” Interplanetary Internet Special Interest
Group, 2012.

[4] D. T. N. R. Group, “Compiling DTN2,” Internet Research
Task Force (IRTF), 2013. [Online]. Available:
http://www.dtnrg.org/docs/code/DTN2/doc/manual/compili
ng.html. [Accessed 10 March 2013].

[5] BBN Technologies, Latency-Aware Information Access
with User-Directed Fetch Behaviour for Weakly-
Connected Mobile Wireless Clients, Cambridge, MA:
Internetwork Research, 2002.

[6] R. Krishnan, P. Basu, J. M. Mikkelson, C. Small, R.
Ramanathan, D. W. Brown, J. R. Burgess, A. L. Caro, M.
Condell, N. C. Goffee, R. R. Hain, R. E. Hansen, C. E.
Jones, V. Kawadia, D. P. Mankins, B. I. Schwartz, W.
T. Strayer, J. W. Ward, D. P. Wiggins and S. H. Polit,
The SPINDLE Disruption-Tolerant Networking System,
Cambridge, MA: BBN Technologies, 2007.

[7] Information Sciences Institute University of Southern
California, “Transmission Control Protocol DARPA
Internet Program Protocol Specification,” Information
Sciences Institute University of Southern California,
Marina del Rey, 1981.

[8] K. Scott and S. Burleigh, “Bundle Protocol
Specification (RFC 5050),” The IETF Trust, 2007.

[9] BBN Technologies Corp, SPINDLE DTN API, Cambridge, MA:
BBN Technologies Corp, 2009.

 88

[10] Raytheon BBN Technologies Corporation, Software User
Manual for the USMC Disruption Tolerant Networking,
Cambridge, 2012.

[11] Ekiga.org, “Ekiga softphone features,” Ekiga.org,
[Online]. Available: http://www.ekiga.org/ekiga-
softphone-features. [Accessed 2 February 2013].

[12] J. Rohrer and G. Xie, An application transparent
approach to integrating ip and disruption tolerant
networks, Monterey: Unpublished manuscript, 2012.

[13] Ekiga, Open Phone Abstraction Library Overview, 2010.

[14] D. Smithies, “OPAL - Open Phone Abstraction Library,”
28 February 2005. [Online]. Available:
http://www.opalvoip.org/docs/opal-v3_10/. [Accessed 10
February 2013].

[15] C. Southeren, “Portable Tools Library,” Equivalence
Pty Ltd, 17 May 2004. [Online]. Available:
http://www.opalvoip.org/docs/ptlib-v2_10/. [Accessed
12 February 2013].

[16] J. Postel, “Internet Control Message Protocol, DARPA
Internet Program Protocol Specification (RFC792),”
Network Working Group, September 1981.

[17] S. Walton, Linux® Socket Programming, Indianapolis:
Sams, 2001.

[18] Cprogramming.com, “cboard.programming.com - ping
program,” vBulletin Solutions, Inc, 2013. [Online].
Available: http://cboard.cprogramming.com/networking-
device-communication/41635-ping-program.html.
[Accessed 22 January 2013].

[19] S. Burleigh, V. Cerf, L. Torgerson, R. Durst, K.
Scott, K. Fall and H. Weiss, Delay-tolerant network
architecture, The IETF Trust, 2007.

[20] V. Cerf, Y. Dalal and C. Sunshine, “Specification of
Internet Transmission Control Program,” Network
Working Group, 1974.

 89

[21] J. N. Hoover, “DoD pushes military’s mobile strategy
forward,” InformationWeek Government, 26 October 2012.
[Online]. Available:
http://www.informationweek.com/government/mobile/dod-
pushes-militarys-mobile-strategy-for/240010603.
[Accessed 20 January 2013].

[22] OPALVoIP.org, “OPALVoIPWiki FAQs,” OPALVoIP.org,
[Online]. Available:
http://www.opalvoip.org/pmwiki/pmwiki.php?n=Main.FAQ.
[Accessed 8 February 2013].

 90

THIS PAGE INTENTIONALLY LEFT BLANK

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Systems Command

